11 |
Performance of Polyurea Retrofitted Unreinforced Concrete Masonry Walls Under Blast LoadingCiornei, Laura 22 August 2012 (has links)
Unreinforced masonry walls subjected to blast loading are vulnerable to collapse and fragmentation. The objective of this thesis is to conduct experimental and analytical research for developing a blast retrofit methodology that utilizes polyurea. A total of four unreinforced masonry walls were constructed and tested under various shock tube induced blast pressures at the University of Ottawa Shock Tube Testing Facility. Two of the retrofitted walls had surface-sprayed polyurea. The results indicate that the use of polyurea effectively controlled fragmentation while significantly increased the load capacity and stiffness of masonry walls. Polyurea proved to be an excellent retrofit material for dissipating blast induced energy by providing ductility to the system and changing the failure mode from brittle to ductile. Single degree of freedom (SDOF) dynamic analyses were conducted as part of the analytical investigation. The results show that the analytical model provides reasonably accurate predictions of the specimen response.
|
12 |
Performance of Polyurea Retrofitted Unreinforced Concrete Masonry Walls Under Blast LoadingCiornei, Laura 22 August 2012 (has links)
Unreinforced masonry walls subjected to blast loading are vulnerable to collapse and fragmentation. The objective of this thesis is to conduct experimental and analytical research for developing a blast retrofit methodology that utilizes polyurea. A total of four unreinforced masonry walls were constructed and tested under various shock tube induced blast pressures at the University of Ottawa Shock Tube Testing Facility. Two of the retrofitted walls had surface-sprayed polyurea. The results indicate that the use of polyurea effectively controlled fragmentation while significantly increased the load capacity and stiffness of masonry walls. Polyurea proved to be an excellent retrofit material for dissipating blast induced energy by providing ductility to the system and changing the failure mode from brittle to ductile. Single degree of freedom (SDOF) dynamic analyses were conducted as part of the analytical investigation. The results show that the analytical model provides reasonably accurate predictions of the specimen response.
|
13 |
Performance of Polyurea Retrofitted Unreinforced Concrete Masonry Walls Under Blast LoadingCiornei, Laura January 2012 (has links)
Unreinforced masonry walls subjected to blast loading are vulnerable to collapse and fragmentation. The objective of this thesis is to conduct experimental and analytical research for developing a blast retrofit methodology that utilizes polyurea. A total of four unreinforced masonry walls were constructed and tested under various shock tube induced blast pressures at the University of Ottawa Shock Tube Testing Facility. Two of the retrofitted walls had surface-sprayed polyurea. The results indicate that the use of polyurea effectively controlled fragmentation while significantly increased the load capacity and stiffness of masonry walls. Polyurea proved to be an excellent retrofit material for dissipating blast induced energy by providing ductility to the system and changing the failure mode from brittle to ductile. Single degree of freedom (SDOF) dynamic analyses were conducted as part of the analytical investigation. The results show that the analytical model provides reasonably accurate predictions of the specimen response.
|
14 |
Nosná konstrukce polyfunkčního domu / Load bearing structure of multifunctional houseMartínek, David January 2018 (has links)
Master´s thesis is based on analysis and design of a load-bearing structure of multifunctional house. The main load-bearing elements in the vertical direction are the monolithic reinforced walls and the main load-bearing elements in the horizontal direction are monolithic reinforced concrete plates. The connection of individual floors is made of monolithic reinforced concrete staircases. The foundation of the building is realized through a system of strips foundation. Design drawings are made to selected elements of the structure.
|
15 |
Mechanisms of deformation and energy dissipation in antler and arthropod cuticle with bio-inspired investigationsde Falco, Paolino January 2018 (has links)
Bio-composite hierarchical materials have attracted the interest of the academic community operating in the field of bio-inspired materials for their outstanding mechanical properties achieved via lightweight structural designs. Antler and mantis shrimp's cuticle are extreme examples of materials naturally optimised to resist impacts and bear dynamic loading. Firstly, a class of finite-element fibril models was developed to explain the origin of heterogeneous fibrillar deformation and hysteresis from the nanostructure of antler. Results were compared to synchrotron X-ray data and demonstrated that the key structural motif enabling a match to experimental data is an axially staggered arrangement of stiff mineralised collagen fibrils coupled with weak, damageable interfibrillar interfaces. Secondly, the cuticle of the crustacean Odontodactylus scyllarus, known as peacock mantis shrimp, was investigated. At the nanoscale it consists of mineralised chitin fibres and calcified protein matrix, which form plywood layers at the microscale. Lamination theory was used to calculate fibrillar deformation and reorientation and, in addition, an analytical formulation was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. This animal also attracted my attention for using its hammer-like appendages to attack and destroy the shells of prey with a sequence of two strikes. Inspired by this double impact strategy, I performed a set of parametric finite-element simulations of single, double and triple mechanical hits, to compute the damage energy of the target. My results reveal that the crustacean attack strategy has the most damaging effect among the double impact cases, and lead me to hypothesise, that optimal damaging dynamics exists, depending on the sequence of consecutive impacts and on their time separation values. These new insights may provide useful indications for the design of bio-inspired materials for high load-bearing applications.
|
16 |
Jämförelsestudie avseende stomsystem : Ramverk eller fackverk/balk/pelar-system / Comparative study on load bearing system : Framework or column and truss/beam systemLindberg, Johan January 2013 (has links)
Projektet omfattade en jämförelsestudie avseende stomsystem. Studien undersökte ramverk och fackverk/balk/pelar-system och genomfördes självständigt med stöttning av Ramböll AB´s kontor i Falun. Syftet var främst att undersöka vilka skillnader det finns mellan tvåledsramar och fackverk/balk/pelar-system för lätta hallbyggnader och försöka få klarhet i varför fackverk/balk/pelar-system är det dominerande systemet i Sverige eftersom övriga Europa har tagit en annan utveckling och domineras av tvåledsramar. Studien undersöker skillnaderna mellan systemen i en hallbyggnad med förutbestämda mått i stål.Inledningsvis gjordes en litteraturstudie för att få en bredare bakgrund av systemen och en bättre förståelse om förutsättningarna för varje system. Efter litteraturstudien kunde sedan ett typhus och beräkningsunderlag för jämförelsestudien tas fram. Även en enkätstudie gjordes med syftet att skapa en tydlig bild av vilket stomsystem konstruktörer i Sverige oftast väljer och varför. Resultatet av studien visade att tvåledsramar ger en ökad kostnad jämfört med fackverk/balk/pelar-system i materialåtgång och framställning samt att beräkningarna blir mer komplicerade. Skulle fortsatta studier göras med dessa system i byggnader med andra mått skulle det kanske gå att få fram speciella mått på byggnader där kostnaden för tvåledsramar blir densamma som för fackverk/balk/pelar-system och därför är ett likvärdigt alternativ som stomsystem.En viktig slutsats från projektet är att tvåledsramar används mycket mer sällan än fackverk/balk/pelar-system som stomsystem i lätta hallbyggnader i Sverige på grund av att kostnaderna blir mycket högre med tvåledsramar och att det är ett mer komplicerat system i beräkningsarbetet. De viktigaste slutsatserna från jämförelsestudien går att sammafatta som följande: Tvåledsramar är dyrare att använda. Tvåledsramar är ett mer komplicerat system beräkningsmässigt. Traditionen av att använda tvåledsramar finns inte och därför används inte systemet. / The project included a comparison study on frame systems. The study investigated framework and truss/beam/column-system and was conducted independently with support of Ramboll AB 's office in Falun. The aim was primarily to examine what differences there are between frameworks with two joints and truss/beam/column-systems for light industrial buildings and try to determine why the truss/beam/column-system is the dominant system in Sweden because the rest of Europe has taken a different development and dominated by framework with two joints. The study examines the differences between the systems in a industrial building with predetermined dimensions in steel.Initially, a literature study was conducted to gain a broader view of the systems and to create a better understanding for the conditions for each system. After the literature study was conducted could a exampelhouse and underlay for the comparison study be developed. A survey study were also conducted and the purpose was to create a clear picture of which system the frame system designers in Sweden usually choose and why. The results of the study showed that frameworks with two joints give an increased cost compared with truss/beam/column-system in material consumption and production, and the calculations become more complicated for the framwork. Should further studies be done with these systems in buildings with other measurements, it might possible to obtain specific measures of buildings where the cost of frameworks with two joints will be the same as for a building with truss/beam/column-system and therefore become an equivalent alternative.An important conclusion of this project is that a framework with two joints is used much more rarely than truss/beam/column-system as frame systems in light industrial buildings in Sweden because the cost will be much higher with a framework with two joints and that it is a more complicated system in the computational work . The main conclusions from comparative study can be summarized as follows: Framwork with two joints is more expensive to use. Framework with two joints is a more complicated system computationally. The tradition of using framework with two joints does not exist and it's therefore the system does not being used.
|
17 |
Trąšų sandėlis Smilgiuose / Fertilizer Warehouse in SmilgiaiMotiekaitis, Audrius 29 August 2012 (has links)
Savo baigiamajame statybos inžinerijos bakalauro darbe pavadinimu „Trąšų sandėlis Smilgiuose“ projektuoju trąšų sandėlį Panevėžio r. sav., Smilgiuose, Sodžiaus g. 7. Projektuojamą trąšų sandėliavimo pastatą sudaro dvi atskiros patalpų grupės, tai sandėliavimo patalpa ir administracinės – pagalbinės patalpos. Toks patalpų suskirstymas yra numatomas dėl sandėlio gamybinės ir administracinės veiklos pobūdžio. / In my Bachelor paper on construction engineering “Fertilizer Warehouse in Smilgiai“ I designed a fertilizer warehouse located in Sodžiaus st. 7, Smilgiai, Panevėžys district. The designed warehouse for fetilizer storage consists of two separate premises, storage block and administrative-support block. Such division is intended for the industrial and administrative activities of the warehouse.
|
18 |
Seismic Retrofit of Load Bearing Masonry Walls with Surface Bonded FRP SheetsArifuzzaman, Shah 07 June 2013 (has links)
A large inventory of low rise masonry buildings in Canada and elsewhere in the world were built using unreinforced or partially reinforced load bearing wall. The majority of existing masonry structures is deficient in resisting seismic force demands specified in current building codes. Therefore, they pose significant risk to life safety and economic wellbeing of any major metropolitan centre. Because it is not economically feasible to replace the existing substandard buildings with new and improved structures, seismic retrofitting remains to be an economically viable option.
The effectiveness of surface bonded carbon fiber-reinforced polymer (CFRP) sheets in retrofitting low-rise load bearing masonry walls was investigated in the current research project. The retrofit technique included the enhancements in wall capacity in shear and flexure, as well as anchoring the walls to the supporting elements through appropriate anchorage systems. Both FRP fan type anchors and steel sheet anchors were investigated for elastic and inelastic wall response. One partially reinforced masonry (PRM) wall and one unreinforced masonry (URM) wall were built, instrumented and tested under simulated seismic loading to develop the retrofit technique. The walls were retrofitted with CFRP sheets applied only on one side to represent a frequently encountered constraint in practice. FRP fan anchors and stainless steel sheet anchors were used to connect the vertical FRP sheets to the wall foundation. The walls were tested under constant gravity load and incrementally increasing in-plane deformation reversals. The lateral load capacities of both walls were enhanced significantly. The steel sheet anchors also resulted in some ductility. In addition, some small-scale tests were performed to select appropriate anchor materials. It was concluded that ductile stainless steel sheet anchors would be the best option for brittle URM walls.
Analytical research was conducted to assess the applicability of truss analogy to retrofitted walls. An analytical model was developed and load displacement relationships were generated for the two walls that were retrofitted. The analytical results were compared with those obtained experimentally, indicating good agreement in force resistance for use as a design tool.
|
19 |
Seismic Retrofit of Load Bearing Masonry Walls with Surface Bonded FRP SheetsArifuzzaman, Shah January 2013 (has links)
A large inventory of low rise masonry buildings in Canada and elsewhere in the world were built using unreinforced or partially reinforced load bearing wall. The majority of existing masonry structures is deficient in resisting seismic force demands specified in current building codes. Therefore, they pose significant risk to life safety and economic wellbeing of any major metropolitan centre. Because it is not economically feasible to replace the existing substandard buildings with new and improved structures, seismic retrofitting remains to be an economically viable option.
The effectiveness of surface bonded carbon fiber-reinforced polymer (CFRP) sheets in retrofitting low-rise load bearing masonry walls was investigated in the current research project. The retrofit technique included the enhancements in wall capacity in shear and flexure, as well as anchoring the walls to the supporting elements through appropriate anchorage systems. Both FRP fan type anchors and steel sheet anchors were investigated for elastic and inelastic wall response. One partially reinforced masonry (PRM) wall and one unreinforced masonry (URM) wall were built, instrumented and tested under simulated seismic loading to develop the retrofit technique. The walls were retrofitted with CFRP sheets applied only on one side to represent a frequently encountered constraint in practice. FRP fan anchors and stainless steel sheet anchors were used to connect the vertical FRP sheets to the wall foundation. The walls were tested under constant gravity load and incrementally increasing in-plane deformation reversals. The lateral load capacities of both walls were enhanced significantly. The steel sheet anchors also resulted in some ductility. In addition, some small-scale tests were performed to select appropriate anchor materials. It was concluded that ductile stainless steel sheet anchors would be the best option for brittle URM walls.
Analytical research was conducted to assess the applicability of truss analogy to retrofitted walls. An analytical model was developed and load displacement relationships were generated for the two walls that were retrofitted. The analytical results were compared with those obtained experimentally, indicating good agreement in force resistance for use as a design tool.
|
20 |
Effect of Repeated Cyclic Lateral Loads on Load Bearing Shear Wall Panelsde Lisle, D. J. 04 1900 (has links)
<p> The slitted wall, a concept originally used to improve the properties of infilled wall panels, is applied to shear wall structures. An ordinary reinforced concrete wall and three slitted walls were tested under cycles of repeated lateral displacements. The effect of vertical load and the lengthening of the slits to full panel height was also investigated. </p> <p> The walls are compared by considering the different crack formations, stiffness deteriorations, load-deflection characteristics and energy properties. It is shown that vertical slits do not produce improvements to the lateral response of wall panels. The application of vertical loads is beneficial and the lengthening of the vertical slits to full panel height is detrimental to the behaviour of the wall panels. </p> / Thesis / Master of Engineering (ME)
|
Page generated in 0.0965 seconds