• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 122
  • 46
  • 45
  • 24
  • 23
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • Tagged with
  • 727
  • 155
  • 96
  • 91
  • 84
  • 76
  • 76
  • 69
  • 63
  • 61
  • 60
  • 55
  • 54
  • 53
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Behavioural Demand Response for Future Smart Homes: Investigation of Demand Response Strategies for Future Smart Homes that Account for Consumer Comfort, Behaviour and Cybersecurity

Anuebunwa, Ugonna R. January 2018 (has links)
Smart metering and precise measurement of energy consumption levels have brought more detailed information and interest on the actual load profile of a house which continues to improve consumer-retailer relationships. Participation in demand response (DR) programs is one of these relationships but studies have shown that there are considerable impacts resulting to some level of discomfort on consumers as they aim to follow a suggested load profile. This research therefore investigates the impact on consumers while participating in DR programs by evaluating various perspectives that includes:  Modelling the causes discomfort during participation in DR programs;  Evaluation of user participation capabilities in DR programs;  Identification of schedulable and non-schedulable loads and opportunities;  Application of load scheduling mechanism which caters for specific user concerns.  Investigation towards ensuring a secure and robust system design. The key source of information that enhances this work is obtained from data on historical user behavior which can be stored within a smart controller installed in the home and optimised using genetic algorithm implemented on MATLAB. Results show that user participation in DR programs can be improved and effectively managed if the challenges facing home owners are adequately understood. This is the key contribution of this work whereby load schedules created are specifically tailored to meet the need of the users hence minimizing the impact of discomfort experienced due to participation in DR programs. Finally as part of the test for robustness of the system design in order to prevent or minimize the impact of any event of a successful cyber-attack on the load or price profiles, this work includes means to managing any such attacks thereby mitigating the impact of such attacks on users who participate in demand response programs. Solutions to these attacks are also proffered with the aim of increasing robustness of the grid by being sufficiently proactive.
212

Exposure of wheat to flameless catalytic infrared radiation on temperatures attained, wheat physical properties, microbial loads, milling yield, and flour quality

Deliephan, Aiswariya January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Bhadriraju Subramanyam / Organic, hard red winter wheat of 11% moisture was tempered with distilled water to moisture levels of 16 and 18% and held for 8, 16, and 24 h. At each moisture and holding time wheat was unexposed (control) or exposed to infrared radiation for 1, 1.5, and 2 min using a bench-top flameless catalytic infrared emitter. The mean external grain temperatures for 16% mc wheat measured with thermocouples during infrared exposure of 1, 1.5, and 2 min ranged from 77.4-83.1, 93.7-101.2, and 91.2-98.3°C, respectively; corresponding mean internal temperatures were 67.3-76.4, 80.0-85.6, and 81.3-93.2°C. Minor differences in kernel moisture, hardness, and weight were observed among treatments. Tempered wheat after infrared exposure among treatments lost 1.5-2% moisture. Infrared exposure of wheat reduced initial bacterial loads (6.7×10[superscript]4 CFU/g) by 98.7% and fungal loads (4.3×10[superscript]3 CFU/g) by 97.8% when compared with those on untreated wheat. Wheat tempered to 18% and exposed for 2 min to infrared radiation lost 2% moisture, and this wheat when milled had a yield of 73.5%. The color of flour from infrared- exposed wheat was slightly dark (color change, ΔE = 0.31) when compared with untreated flour. Differential scanning calorimetry showed that flours from infrared exposed wheat had lower enthalpy (3.0 J/g) than those unexposed to infrared (3.3 J/g). These flours were adversely affected because they had longer mixing times (7-15 min) at all infrared exposures due to the presence of insoluble polymeric proteins (up to 60%). Microbial loads in flour from wheat tempered to 18% and exposed for 1-2 min had 0.6-2.4 log reduction compared to flour from untreated wheat. Wheat tempered to 18% moisture with electrolyzed-oxidizing (EO) water reduced bacterial and fungal loads up to 66%. EO water tempered wheat exposed for 1, 1.5, and 2 min to infrared radiation showed microbial reductions of 99.5% when compared with control wheat. Infrared treatment of tempered wheat cannot be recommended as it adversely affected flour functionality. The use of EO water for tempering as opposed to potable water that is generally used in mills slightly enhances microbial safety of hard red winter wheat.
213

A generalized three-parameter biaxial strength criterion for concrete

Kitterman, David L. January 1985 (has links)
Call number: LD2668 .T4 1985 K57 / Master of Science
214

The feasibility of modern technologies for reinforced concrete containment structures of nuclear power plants

Czerniewski, Sarah January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / This report explores the requirements for the design and analysis of concrete containment and shows how newer material technologies such as self-consolidating concrete (SCC) and fiber reinforcement could assist in the constructability and durability of new nuclear power plant facilities. SCC for example, enables concrete to flow in the forms around the reinforcement and provides a more uniform adhesion with the reinforcement. Additionally, fiber reinforcement in the concrete mix increases bonding capability, thus making the concrete less likely to fracture. In particular, the ease of constructability benefits offshore floating nuclear power plants and preapproved modular power plants. To differentiate, the offshore plant would employ the assembly line to make all the plants the same while the modular plant, designed to be used anywhere, is not site specific and is typically smaller. Regarding research method, the report starts with the history of the nuclear industry in the United States, including the last nuclear power plant constructed, clarifying that nuclear energy was first harnessed for a submarine propulsion system before being employed to generate electricity. After these early endeavors, two major accidents, Three Mile Island (March 28, 1979) and Chernobyl (April 26, 1986), provided information regarding the lack of safety of nuclear power plant design and operation. Since the containment building is the focus of this report, recognizing the loads and the load combinations for design was the next step in research. Following that, the next step was to determine the design considerations and analyze the containment structure. New material technologies clearly have opened the door to new construction techniques, and the combination of new materials and methods offers structural engineers opportunity to build inherently safer nuclear power plants.
215

PRESSURE BELT FOR WING LOADS MEASUREMENT

Eccles, Lee H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Boeing Commercial Airplanes has used many methods in the past to measure the structural loads on the wings of its airplanes. The most recent approach is to use arrays of MEMS pressure sensors on the top and bottom surfaces of the wings. By knowing the difference in pressure between the top and bottom of the wings the structural loads on the wings can be calculated. It was decided that in order to build an array of 1100 sensors it would be necessary to condition the sensors and convert the analog output to a digital form at the site of the pressure measurement. This process was taken one step further by converting the output of the A/D converter into engineering units within the sensor module as well. The array is built using a flex circuit card in one foot sections that can be interconnected to form an array of up to 125 sensors. There is a sensor location every two inches on the flex circuit but not all locations are populated. This paper will describe not only the pressure belt but the lessons learned during the development and the implications that these lessons have for smart transducers in general.
216

Flexural strength of reinforced concrete external column-beam joints

Yue, Hon-fai, Peter., 余漢輝. January 1973 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
217

Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams

Chau, Siu-lee., 周小梨. January 2005 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
218

A study of geosynthetic reinforced flexible pavement system

Gupta, Ranjiv 21 June 2010 (has links)
The use of geosynthetics as reinforcement for the base layer of flexible pavement systems has grown steadily over the past thirty years. In spite of the evidence that geosynthetic reinforcements can lead to improved pavement performance, the specific conditions or mechanisms that enable and govern the reinforcement are unclear, largely remaining unidentified and unmeasured. The appropriate selection of design parameters for geosynthetics is complicated by the difficulty in associating their relevant properties to the improved pavement performance. In addition, pavement structures deteriorate under the combined effects of traffic loading and environmental conditions, such as moisture changes. However, these factors have not been studied together in the evaluation of the overall performance of pavement systems. Consequently, this research focused on the assessment of the effect of geosynthetics on the pavement structural section's ability to support traffic loads and to resist environmental changes. Accordingly, the primary objectives of this research were: (i) to determine the governing mechanisms and relevant properties of geosynthetics that contribute to the enhanced performance of pavement systems; (ii) to develop appropriate analytical, laboratory and field methods that are capable of quantifying the above properties for geosynthetics; and (iii) to enable the prediction of pavement performance depending on the various types of geosynthetics used. To fulfill these three objectives, an evaluative, laboratory and field study was performed. The improved performance of pavements due to addition of geosynthetics was attributed to the ability of geosynthetics to laterally restrain the base course material, thereby providing a confinement effect to the pavement. A parameter to quantify the soil-geosynthetic interaction at low displacement magnitudes based on the solution of an analytical model for geosynthetics confined in pullout box was proposed. The pullout tests were then conducted on various geosynthetics to obtain the proposed parameter for various geosynthetics. The quantitative magnitude of the parameter value from the laboratory tests was compared with the qualitative performance observed in the field test sections. Overall, a good agreement was obtained between the laboratory and field results, thereby providing confidence in the ability of the proposed analytical model to predict the governing mechanism for geosynthetic reinforced pavements. / text
219

Modeling of planing craft in waves

Garme, Karl January 2004 (has links)
<p>Simulation of the planing hull in waves has been addressed during the last 25 years and basically been approached by strip methods. This work follows that tradition and describes a time-domain strip model for simulation of the planing hull in waves. The actual fluid mechanical problem is simplified through the strip approach. The load distribution acting on the hull is approximated by determining the section load at a number of hull sections, strips. The section-wise 2-dimensional calculations are expressed in terms of added mass coefficients and used in the formulations of both inertia and excitation forces in the equations of motions. The modeling approach starts from the hypothetic assumption that the transient conditions can be modeled based on those section-wise calculations. The equation of motion is solved in the time-domain. The equation is up-dated at each time step and every iteration step with respect to the momentary distribution of section draught and relative incident velocity between the hull and water and catches the characteristic non-linear behavior of the planing craft in waves.</p><p>The model follows the principles of the pioneering work of E. E. Zarnick differing on model structure and in details such as the modeling of the lift in the transom area. A major part of the work is concerned with experiments and evaluation of simulations with respect to performed model tests and to published experiment data. Simulations of model tests have been performed and comparisons have been made between measured and simulated time series. The link between simulation and experiment is a wave model which is based on a wave height measurement signal. It is developed and evaluated in the thesis.</p><p>The conclusions are in favor of the 2-dimensional approach to modeling the conditions for the planing hull in waves and among further studies is evaluation of simulated loads and motions to full-scale trial measurement data.</p>
220

Pilot modelling for airframe loads analysis

Lone, M. Mudassir 01 1900 (has links)
The development of large lightweight airframes has resulted in what used to be high frequency structural dynamics entering the low frequency range associated with an aircraft’s rigid body dynamics. This has led to the potential of adverse interactions between the aeroelastic effects and flight control, especially unwanted when incidents involving failures or extreme atmospheric disturbances occur. Moreover, the pilot’s response in such circumstances may not be reproducible in simulators and unique to the incident. The research described in this thesis describes the development of a pilot model suitable for the investigation of the effects of aeroelasticity on manual control and the study of the resulting airframe loads. After a review of the state-ofthe- art in pilot modelling an experimental approach involving desktop based pilot-in-the-loop simulation was adopted together with an optimal control based control-theoretic pilot model. The experiments allowed the investigation of manual control with a nonlinear flight control system and the derivation of parameter bounds for single-input-single-output pilot models. It was found that pilots could introduce variations of around 15 dB at the resonant frequency of the open loop pilot-vehicle-system. Sensory models suitable for the simulation of spatial disorientation effects were developed together with biomechanical models necessary to capture biodynamic feedthrough effects. A detailed derivation and method for the application of the modified optimal control pilot model, used to generate pilot control action, has also been shown in the contexts of pilot-model-in-the-loop simulations of scenarios involving an aileron failure and a gust encounter. It was found that manual control action particularly exacerbated horizontal tailplane internal loads relative to the limit loads envelope. Although comparisons with digital flight data recordings of an actual gust encounter showed a satisfactory reproduction and highlighted the adverse affects of fuselage flexibility on manual control, it also pointed towards the need for more incident data to validate such simulations.

Page generated in 0.0394 seconds