251 |
Particularities of the structural behaviour of reinforced high strength concrete slabsBliuc, Radu, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
The introduction of high strength concrete in construction demanded an assessment of the current methods of structural design. In the case of the slabs, the benefits brought about by concretes of higher strength could translate into design of slender sections. Theoretically these sections could be prone to excessive deflections. The flexural behaviour of such structural elements should be carefully assessed. The present thesis addresses a series of particular issues such as deflection at service loads, crack formation and development of tension stiffening and ductility. An experimental program on large-scale samples was conducted. Six one way and four two way slabs made of reinforced high strength concrete were tested under simulated and accurately measured equally distributed loads. Different loading stages were recorded. Crack formation, crack patterns and yield line disposition were observed. The main characteristics of concrete that influence the deflection behaviour were assessed based on collected data and on available literature results. Statistical methods were employed in order to refine empirical equations that help in the design of slabs. To improve the calculation of deflection of slabs a new equation for the effective moment of inertia was proposed. The new formula was integrated into a method of calculating deflection and verified against experimental results. Limits of the use of high strength concrete in slabs were investigated by means of a parametric study. This was designed to answer some questions as: which would be the most important characteristics of high-strength concrete that influence the design and up to what value of strength would the beneficial effect on deflection exhaust its effectiveness. Models based on the refined empirical equations for different concrete parameters were proposed. Another area that has been studied was the ductility of high strength concrete slabs. An analytical comparative study of the ductility of slabs reinforced with steel of different ductility class was conducted. Results were critically appraised and discussed.
|
252 |
Design of unreinforced masonry walls for out-of-plane loading / Craig Robert Willis.Willis, Craig Robert January 2004 (has links)
"November 2004" / Bibliography: p.167-179. / xi, 333 p. : ill., photos (col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Focuses on behavioural models of masonry walls with a view to improving their accuracy and extending their application. Results include a numerical model and mathematical expressions capable of predicting the key stages of the non-linear load-deflection behaviour of walls subjected to vertical bending and axial loading; new mathematical expressions for horizontal and diagonal bending moment capacities that are dimensionally consistent and account for the beneficial effects of compressive stress; and. Experimental test data for masonry sections subjected to horizontal and diagonal bending, which were used in the development and verification of the new mathematical expressions. / Thesis (Ph.D.)--University of Adelaide, School of Civil and Environmental Engineering, 2004
|
253 |
The use of compression precracking constant amplitude (CPCA) test method to obtain near-threshold fatigue crack growth behavior in AA7075-T7351McKnight, Dustin Henry. January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
|
254 |
Analysis of conventionally reinforced concrete deck girder bridges for shearPotisuk, Tanarat 25 August 2004 (has links)
Large numbers of 1950's vintage conventionally reinforced concrete (CRC)
bridges remain in-service in the national bridge inventory. Many of these bridges are
lightly reinforced for shear. Evaluation of these bridges to prevent unnecessary and
costly repairs requires refined analytical techniques. This dissertation presents finite
element (FE) modeling and comparisons of various analytical methods for predicting
capacity of CRC girders typical of reinforced concrete deck girder (RCDG) bridges.
Analyses included bridge-system load distribution, member capacity prediction, and
consideration of corrosion damage for strength deterioration.
Two in-service RCDG bridges were inspected and instrumented to measure
response under known load configurations. Load distribution was developed for the
bridges based on the field data. Comparisons with AASHTO factors indicated the
design factors for load distribution are conservative. Load distribution of the tested
bridges was numerically obtained using FE analysis. The comparisons between
predicted results and field-test data indicated the elastic FE analysis can be used for
modeling of cracked RCDG bridges to predict load distribution factors for more
accurate bridge evaluation.
Analyses were performed for a large set of full-size RCDG, designed to
reflect 1950's vintage details, and tested using various loading configurations. Four
different analysis methods were used to predict the capacity of the specimens
considering details of various stirrup spacing, debonded stirrups, flexural-bar cutoff,
anchorage of flexural reinforcing, and moving supports.
Nonlinear FE analyses were performed to predict behavior of two groups of
experimental reinforced concrete (RC) specimens. Two different span-to-depth
ratios were included: 2.0 and approximately 3.0. Concrete confinement effects were
included in the material modeling. A quasi-displacement control technique was
developed to reduce solution times. The FE predicted results correlated well with
the experimental data.
FE modeling techniques were developed to isolate different contributions of
corrosion damage to structural response of experimental RC beams designed to
produce diagonal-tension failures. Corrosion-damage parameters included concrete
cover spalling; uniform stirrup cross-sectional loss; local stirrup cross-sectional loss
due to pitting; and debonding of corrosion-damaged stirrups from the concrete. FE
analyses were performed including both individual and combined damages. The FE
results matched experimental results well and quantitatively estimated capacity
reduction of the experimental specimens. / Graduation date: 2005 / Best scan available.
|
255 |
Behavior of Full-Scale Reinforced Concrete Members with External Confinement or Internal Composite Reinforcement under Pure Axial LoadDe Luca, Antonio 21 December 2009 (has links)
The need to satisfy aerospace industry's demand not met by traditional materials motivated researchers and scientists to look for new solutions. The answer was found in developing new material systems by combining together two or more constituents. Composites, also known as fiber reinforced polymers (FRP) consisting of a reinforcing phase (fibers) embedded into a matrix (polymer), offered several advantages with respect to conventional materials. High specific modulus and strength together with other beneficial properties, corrosion resistance and transparency to electrical and magnetic fields above all, made FRP also suitable for use as construction materials in structural engineering. In the early years of the twenty-first century, the publication by the American Concrete Institute (ACI) of design guidelines for the use of FRP as internal reinforcement and for external strengthening of concrete members accelerated their implementation for structural engineering applications. To date, FRP have gained full acceptance as advanced materials for construction and their use is poised to become as routine as the use of conventional structural materials such as masonry, wood, steel, and concrete. However, new concrete columns internally reinforced with FRP bars and FRP confinement for existing prismatic reinforced concrete (RC) columns have currently important unsolved issues, some of which are addressed in this dissertation defense. The dissertation is articulated on three studies. The first study (Study 1) focuses on RC columns internally reinforced with glass FRP (GFRP) bars; the second (Study 2) on RC prismatic columns externally confined by means of FRP laminates using glass and glass/basalt fibers; and the third (Study 3) is a theoretical attempt to interpret and capture the mechanics of the external FRP confinement of square RC columns. Study 1 describes an experimental campaign on full-scale GFRP RC columns under pure axial load undertaken using specimens with a 24 by 24 in. (0.61 by 0.61 m) square cross section. The study was conducted to investigate whether the compressive behavior of longitudinal GFRP bars impacts the column performance, and to understand the contribution of GFRP ties to the confinement of the concrete core, and to prevent instability of the longitudinal reinforcement. The results showed that the GFRP RC specimens behaved similarly to the steel RC counterpart, while the spacing of the ties strongly influenced the failure mode. Study 2 presents a pilot research that includes laboratory testing of full-scale square and rectangular RC columns externally confined with glass and basalt-glass FRP laminates and subjected to pure axial load. Specimens that are representative of full-scale building columns were designed according to a dated ACI 318 code (i.e., prior to 1970) for gravity loads only. The study was conducted to investigate how the external confinement affects ultimate axial strength and deformation of a prismatic RC column. The results showed that the FRP confinement increases concrete axial strength, but it is more effective in enhancing concrete strain capacity. The discussion of the results includes a comparison with the values obtained using existing constitutive models. Study 3 proposes a new theoretical framework to interpret and capture the physics of the FRP confinement of square RC columns subjected to pure compressive loads. The geometrical, physical and mechanical parameters governing the problem are analyzed and discussed. A single-parameter methodology for predicting the axial stress - axial strain curve for FRP-confined square RC columns is described. Fundamentals, basic assumptions and limitations are discussed. A simple design example is also presented.
|
256 |
Development of methodology for detection of defect locations in pavement profileRawool, Shubham Shivaji 29 August 2005 (has links)
Pavement smoothness has become a standard measure of pavement quality. Transportation agencies strive to build and maintain smoother pavements. Smooth roads provide comfort while riding, minimize vehicular wear and tear and increase pavement life. A user perceives smoothness of a pavement based on the ride quality, which is severely affected by presence of defects on pavement surface. Defects identified after construction are corrected as per smoothness specifications prescribed by respective transportation agencies. The effectiveness of any method used to determine defect locations depends on the decrease in roughness obtained on correction of defects. Following the above line of thought a method that detects defects by comparing original profile to a smoothened profile will be more effective in identifying defect locations that cause roughness in pavements. This research report proposes a methodology to detect defect locations on pavement surface using profile data collected on pavements. The approach presents a method of obtaining a smoothened profile from the original profile to help identify defect locations based on deviations of the original profile from the smoothened one. Defect areas will have a higher deviation from the smoothened profile as compared to smooth areas. The verification of the defects identified by this approach is carried out by determining the decrease in roughness after removal of the identified defects from profile. A roughness statistic is used to do the same. The approach is illustrated using profile data collected on in-service pavement sections.
|
257 |
Progressive Collapse: Comparison of Main Standards, Formulation and Validation of New Computational ProceduresMenchel, Kfir 29 October 2008 (has links)
Throughout recent history, famous records of building failures may be found, unfortunately accompanied by great human loss and major economic consequences. One of the mechanisms of failure is referred to as ‘progressive collapse’: one or several structural members suddenly fail, whatever the cause (accident or attack). The building then collapses progressively, every load redistribution causing the failure of other structural elements, until the complete failure of the building or of a major part of it. The civil engineering community’s attention to this type of event was first drawn by the progressive collapse of the building called Ronan Point, following a gas explosion in one of the last floors. Different simplified procedures for simulating the effects of progressive collapse can now be found in the literature, some of them described in detail. However, no extensive study can be found, in which these procedures are compared to more complete approaches for progressive collapse simulation, aiming at the comparison of the assumptions underlying them. To further contribute to the elaboration of design codes for progressive collapse, such a study would therefore be of great interest for practitioners.
All parties involved with the subject of progressive collapse are currently attempting to bridge the gap between the work done on the research front on the one hand, what can be considered as a fitting numerical model for regular industrial use on the other, and finally, the normalisation committees. The present research work aims at providing insight as to how the gaps between these poles may be reduced. The approach consists in studying the various hypotheses one by one, and gradually adding complexities to the numerical model, if they prove to be warranted by the need for sufficient accuracy. One of the contributions of the present work stems from this approach, in that it provides insight regarding the validity of the various simplifying assumptions. It also leads to the development of procedures which are kept as simple as possible, in an attempt to design them as best as possible for regular industrial use.
The objective of simplifying assumptions validation is pursued in Chapter 2. This chapter consists of the text of a paper entitled “Comparison and study of different progressive collapse simulation techniques for RC structures”, in which the main simplifying assumptions of the progressive collapse guidelines are detailed and assessed. The DoD [1] and GSA [2] static linear and non-linear procedures are investigated, and compared to more complete approaches in order to assess their validity.
In the next two chapters, two new procedures for design against progressive collapse are developed. They are based on quasi-static computations, their main objective being to account accurately for dynamic inertial effects. The first of these chapters consists in the text of a paper entitled “A new pushover analysis procedure for structural progressive collapse based on a kinetic energy criterion”, in which energetic considerations allow for the development of a static equivalent pushover procedure. The second chapter consists of the text of a paper entitled “A new pushover analysis procedure for structural progressive collapse based on optimised load amplification factors”, which uses load amplification factors resulting from optimisation procedures in order to account for dynamic inertial effects. The contributions of these two papers lie in the fact that they offer an improved accuracy on the results, when compared with other procedure available in the literature, which follow the same general principles. The two proposed procedures are thoroughly validated by systematic comparisons with results obtained with the more costly dynamic non-linear computations.
Finally, an additional chapter focuses on the various approaches that can be adopted for the simulation of reinforced concrete beams and columns. Because a rather simple model for reinforced concrete is used in Chapter 2, the bulk of this chapter consists in the implementation of a more complex fibre-based non-linear beam element. Comparisons performed with this model provide insight to the limitations of the simpler model, which is based on the use of lumped plastic hinges, but show this simpler model to be valid for the purposes of the present work.
|
258 |
Modeling of planing craft in wavesGarme, Karl January 2004 (has links)
Simulation of the planing hull in waves has been addressed during the last 25 years and basically been approached by strip methods. This work follows that tradition and describes a time-domain strip model for simulation of the planing hull in waves. The actual fluid mechanical problem is simplified through the strip approach. The load distribution acting on the hull is approximated by determining the section load at a number of hull sections, strips. The section-wise 2-dimensional calculations are expressed in terms of added mass coefficients and used in the formulations of both inertia and excitation forces in the equations of motions. The modeling approach starts from the hypothetic assumption that the transient conditions can be modeled based on those section-wise calculations. The equation of motion is solved in the time-domain. The equation is up-dated at each time step and every iteration step with respect to the momentary distribution of section draught and relative incident velocity between the hull and water and catches the characteristic non-linear behavior of the planing craft in waves. The model follows the principles of the pioneering work of E. E. Zarnick differing on model structure and in details such as the modeling of the lift in the transom area. A major part of the work is concerned with experiments and evaluation of simulations with respect to performed model tests and to published experiment data. Simulations of model tests have been performed and comparisons have been made between measured and simulated time series. The link between simulation and experiment is a wave model which is based on a wave height measurement signal. It is developed and evaluated in the thesis. The conclusions are in favor of the 2-dimensional approach to modeling the conditions for the planing hull in waves and among further studies is evaluation of simulated loads and motions to full-scale trial measurement data.
|
259 |
Electrical Systems for Wave Energy ConversionBoström, Cecilia January 2011 (has links)
Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system. / <p>Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 727</p>
|
260 |
Wave Loads on a Submerged Intake Structure in the Surf ZoneHecimovich, Mark M.L. 12 March 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure.
The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
|
Page generated in 0.03 seconds