91 |
Rock mechanics, failure phenomena with pre-existing cracks and internal fluid flow through cracks / Mécanique des roches, phénomènes de rupture avec la prise en compte des fissures existantes et l'écoulement du fluide interne à travers les fissuresNikolic, Mijo 28 September 2015 (has links)
Cette thèse aborde le problème de la rupture localisée dans les roches, qui caractérise un grand nombre d'applications dans le domaine du génie civil, tels que la rupture du barrage, effondrement des fondations, la stabilité des excavations ou les tunnels, les glissements de terrain et les éboulements. Le risque de rupture localisée devrait être mieux appréhendé pour mieux l'éviter. La rupture localisée dans les roches est généralement caractérisée par une une rupture soudaine et quasi-fragile sans avertissement sous forme de grandes déformations et visibles avant la rupture elle-même. Cela se produit également sous l'influence des hétérogénéités matériels, des fissures existantes et d'autres défauts initiaux.Les trois nouveaux modèles numériques, intégrant les mécanismes de ruptures localisées, l'hétérogénéité de la roche et des fissures existantes et d'autres défauts, sont présentés dans cette thèse. Le premier modèle propose une représentation en 2D de roche composite à deux phases, où la phase solide représente la roche intacte et la faible phase indique les défauts initiaux. Le deuxième modèle représente l'extension du modèle précédent vers un espace 3D, où est considéré un ensemble complet de mécanismes de ruptures en 3D. Les propriétés hétérogènes sont considérées ici par une distribution aléatoire en accord avec la variation statistique de Gausse. Ce modèle est également utilisé pour l'analyse de la roche intacte par spécimens possédant des écarts de formes géométriques qui influencent la résistance à la compression uni-axiale. Le troisième modèle est un modèle en 2D, traitant l’interaction volumétrique entre un fluide et la structure sous l’influence de l’écoulement du fluide à travers le milieu de la roche poreuse.L'approche des lattices discrètes est choisie pour construire un cadre général pour les trois modèles, où les cellules de Voronoï représentent les grains de roche tenus ensemble par les poutres de Timoshenko comme des liens de cohésion. La cinématique améliorée est caractérisée par l'approche intégrée des discontinuités comme un supplément à la cinématique standard de liens cohérents. Cela sert pour la propagation de la macro fissure dans tous les modes de ruptures et de leurs combinaisons, entre les grains de la roche. La formation de la zone du processus de rupture suivie par des microfissures coalescentes, précédant la rupture localisée, est aussi considérée dans les modèles. L’écoulement du fluide est régi par la loi de Darcy, tandis que les conditions de couplage obéissent à la théorie de poroélasticité de Biot.Les résultats des modèles numériques ont été vérifiés par des exemples de la littérature dans le cas des modèles en 2D. Le modèle en 3D a été validé suite aux résultats expérimentaux effectués sur 90 échantillons de roches, où sont considérées de légères déviations géométriques des spécimens.La présentation de ces modèles, ainsi que leurs aspects de mise en œuvre sont présentés en détail. L’approche avec une discontinuité intrinsèque et le caractère local des améliorations nécessaires à la simulation des discontinuités de déplacement orientent vers la condensation statique des degrés de liberté améliorés sont efficacement intégrés dans l’architecture des éléments finis. / This thesis deals with the problem of localized failure in rocks, which occurs often in civil engineering practice like in dam failure, foundation collapse, stability of excavaations, slopes and tunnels, landslides and rock falls. The risk of localized failure should be better understood in order to be prevented. The localized failure in rocks is usually characterized by a sudden and brittle failure without warning in a sense of larger and visible deformations prior to failure. This happens also under the strong influence of material heterogeneities, preexisting cracks and other defects.The three novel numerical models, incorporating the localized failure mechanisms, heterogeneity of rock and preexisting cracks and other defects, are presented in this thesis. First model deals with 2D plane strain two-phase rock composite, where stronger phase represents the intact rock and weaker phase initial defects. Second model represents the extension of the previous model towards the 3D space, where full set of 3D failure mechanisms is considered. Heterogeneous properties are taken here through the random distribution and Gauss statistical variation of material properties. The latter model is also used for the analysis of intact rock core specimens geometrical shape deviations influencing the uni-axial compressive strength. Third model is a 2D, dealing with volumetric fluid-structure interaction and localized failure under the influence of fluid flow throughthe porous rock medium.The discrete beam lattice approach is chosen for general framework for three models, where Voronoi cells represent the rock grains kept together by Timoshenko beams as cohesive links. The enhanced kinematics characterized for embedded discontinuity approach is added upon standard kinematics of cohesive links. This serves for the macro crack propagation in all failure modes and their combinations, between the rock grains. The fracture process zone formation followed by micro-cracks coalescence, preceding the localized failure, is considered as well. Fluid flow is governed by a Darcy law, while coupling conditions obey Biot's theory of poroplasticity. The results of the numerical models were verified by the benchmarks available from literature in 2D case. The 3D model was validated against the experimental results conducted on 90 rock specimens, where even slight geometrical deviations of specimens are considered.Presentation of these models, as well as their implementation aspects are given in full detail. Embedded discontinuity concept and the local nature of enhancements required to capture the displacement discontinuities leads to the very efficient approach with static condensation of enhanced degrees of freedom and technique that can be efficiently incorporated into finite element code architecture.
|
92 |
Energy-efficient Data Aggregation Using Realistic Delay Model in Wireless Sensor NetworksYan, Shuo January 2011 (has links)
Data aggregation is an important technique in wireless sensor networks. The data are gathered together by data fusion routines along the routing path, which is called data-centralized routing. We propose a localized, Delay-bounded and Energy-efficient Data Aggregation framework(DEDA) based on the novel concept of DEsired Progress (DEP). This framework works under request-driven networks with realistic MAC layer protocols. It is based on localized minimal spanning tree (LMST) which is an energy-efficient structure. Besides the energy consideration, delay reliability is also considered by means of the DEP. A node’s DEP reflects its desired progress in LMST which should be largely satisfied. Hence, the LMST edges might be replaced by unit disk graph (UDG) edges which can progress further in LMST. The DEP metric is rooted on realistic degree-based delay model so that DEDA increases
the delay reliability to a large extent compared to other hop-based algorithms. We also combine our DEDA framework with area coverage
and localized connected dominating set algorithms to achieve two more resilient DEDA implementations: A-DEDA and AC-DEDA. The simulation results confirm that our original DEDA and its two enhanced
variants save more energy and attain a higher delay reliability ratio
than existing protocols.
|
93 |
Mitigation of Oxygen Stress and Contamination-free Cultivation in Microalga CulturesPeng, Licheng January 2016 (has links)
Microalgae are promising candidates for biofuel production, CO2 biomitigation, and production of a variety of value-added products. However, high production costs and large energy consumption have been a major concern hindering the commercialization of microalgal products and processes. In addition, biological contamination and oxygen stress are two of the major contributors to these challenges. The objective of this project was twofold: 1) developing a novel strategy for control of biological contamination to enable non-sterile cultivation of microalgae such as N. oleoabundans, and 2) developing advanced deoxygenation mechanisms to reduce oxygen accumulation in the culture.
It was found that addition of appropriate amount of NaHCO3 could effectively inhibit the growth of protozoa while its inhibition on microalgae was much less and could be alleviated by increasing pH to an appropriate level. It was also found that adding 160 mM NaHCO3 in media or decreasing incident light intensity to 100 W/m2 would help alleviate the oxidative stress to cells at 400% of air saturation. The feasibility of contamination-free non-sterile cultivation of freshwater green alga N. oleoabundans was verified using long-term continuous cultivation in a 15-liter TPBR with non-sterile medium and aeration. Furthermore, localized oxygen removal using hydrophobic hollow membranes was found to effectively reduce dO2 and increase lipid accumulation. These results have the potential to be translated into low-cost cultivation of freshwater microalgae processes for production of value-added microalgal products. At a more fundamental level, the mechanisms of the inhibition of NaHCO3 on microalgae and protozoa were discussed. Efforts were also made to simulate the effects of incident light intensity on light distribution, cell growth kinetics, and lipid accumulation of N. oleoabundans under non- sterile cultivation conditions.
|
94 |
Plasmonic Nano-Resonators and Fano Resonances for Sensing ApplicationsHajebifard, Akram 05 January 2021 (has links)
Different types of plasmonic nanostructures are proposed and examined experimentally and theoretically, with a view towards sensing applications. First, a self-assembly approach was developed to create arrays of well-ordered glass-supported gold nanoparticles (AuNPs) with controllable particle size and inter-particle spacing. Then, a periodic array of gold nano-disks (AuNDs) supported by a Bragg reflector was proposed and examined in a search for Fano resonances in its optical response. Arrays of heptamer-arranged nanoholes (HNH) in a thin gold film were also proposed and explored theoretically and experimentally, revealing a very rich spectrum of resonances, several exhibiting a Fano lineshape.
A commercial implementation of the vectorial finite element method (FEM) was used to model our plasmonic structures. Taking advantage of the periodic nature of the structures, a unit cell containing a single element was modelled. The transmittance, reflectance or absorbance spectra were computed, and the associated electromagnetic fields were obtained by solving the vector wave equations for the electromagnetic field vectors throughout the structures, subject to the applicable boundary conditions, and the applied source fields. The sensing performance of the structures, based on the bulk sensitivity, surface sensitivity and figure of merit (FOM) was calculated.
First, a novel bottom-up fabrication approach was applied (by our collaborators) to form a periodic array of AuNPs with controllable size over large areas on SiO2 substrates. In this method, self-assembly of block copolymer micelles loaded with metal precursors was combined with a seeding growth route to create ordered AuNPs of desired size. It was shown that this new fabrication method offers a new approach to tune the AuNP size and edge-to-edge inter-particle spacing while preserving the AuNP ordering. The optical characteristics of the AuNP arrays, such as their size, interparticle spacing, localized surface plasmon resonance (LSPR) wavelength, and bulk sensitivity, were examined, numerically and experimentally. This proposed novel fabrication method is applicable for low-cost mass-production of large-area arrays of high-quality AuNPs on a substrate for sensing applications.
Then, we proposed and examined the formation of Fano resonances in a plasmonic-dielectric system consisting of uncoupled gold nano-disk (AuND) arrays on a quarter-wave dielectric stack. The mechanism behind the creation of Fano resonances was explained based on the coherent interference between the reflection of the Bragg stack and the LSPPs of the AuNDs. Fano parameters were obtained by fitting the computational data to the Fano formula. The bulk sensitivities and figure of merit of the Fano resonances were calculated. This plasmonic structure supports Fano resonances with a linewidth around 9 nm which is much narrower than the individual AuND LSPP bandwidth ( 80 nm) and the Bragg stack bandwidth ( 100 nm). Supporting Fano resonances with such a narrow linewidth, the structure has a great potential to be used for sensing applications. Also, this metallic-dielectric nanostructure requires no near-field coupling between AuNDs to generate the Fano resonances. So, the AuNDs can be located far enough from each other to simplify the potential fabrication process.
The optical properties of HNH arrays on an SiO2 substrate were investigated, numerically and experimentally. Helium focused ion beam (HeFIB) milling was applied (by Dr. Choloong Hahn) to fabricate well-ordered and well-defined arrays of HNHs. Transmittance spectra of the structures were obtained as the optical response, which exhibits several Fano resonances. Then, the mechanism behind the formation of the Fano resonances was explained, and the sensing performance of the structure was inspected by measuring the bulk sensitivities. This array of nanohole cluster is exciting because it supports propagating SPPs and LSPPs, and also Wood’s anomaly waves, which makes the optical response very rich in excitations and spectral features. Also, as a periodic array of sub-wavelength metallic nanoholes, the system produces extraordinary optical transmission - highly enhanced transmission through (otherwise) opaque metallic films at specific wavelengths, facilitating measurement acquisition in transmission.
|
95 |
Localized Heating in Membrane Distillation for Performance EnhancementMustakeem, Mustakeem 12 1900 (has links)
Membrane distillation (MD) is an emerging technology capable of treating high-saline feeds and operating with low-grade heat energy. However, commercial implementation of MD is limited by so-called temperature polarization, which is the deviation in the temperature at the feed-membrane interface with respect to the bulk fluid. This work presents solutions to alleviate temperature polarization in MD by employing a localized heating concept to deliver heat at the vicinity of the feed-membrane interface. This can be realized in multiple ways, including Joule heating, photothermal heating, electromagnetic induction heating, and nanofluid heating. In the first experiment, a Joule heating concept was implemented and tested, and the results showed a 45% increase in permeate flux and a 57% decrease in specific energy consumption. This concept was further improved by implementing a new dead-end MD configuration, which led to a 132% increase in the gained output ratio. In addition, the accumulation of foulants on the membrane surface could be successfully controlled by intermittent flushing of feedwater. Three-dimensional CFD calculations of conjugate heat transfer revealed a more uniform heat transfer and temperature gradient across the membrane due to the increased feedwater temperature over a larger membrane area.
In another approach, a photothermal MD concept was used to heat the feed water locally. A 2-D photothermal material, MXene, recently known for its photothermal property, was used to coat commercial MD membranes. The coated membranes were evaluated under one-sun illumination to yield a permeate flux of 0.77 kg.m$^{−2}$h$^{−1}$ with a photothermal efficiency of 65.3% for a feed concentration of 0.36 g.L$^{−1}$. The system can produce around 6 liters of water per day per square meter of membrane.
An energy analysis was also performed to compare the efficiency of various energy sources. Considering the sun as a primary energy source, the performance of different heating modes was compared in terms of performance and scale-up opportunities.
Overall this work demonstrates that the application of localized heating will enable the scale-up and the use of renewable energy sources to make the MD process more efficient and sustainable. / The illustrative figure was produced by Ana Bigio, scientific illustrator, KAUST.
|
96 |
Vliv podleptání plazmonických antén na jejich optickou odezvu / Influence of underetching of plasmonic antennas on their optical responseNovák, Martin January 2017 (has links)
Influence optical response on underetching of plasmonic antennas is observed in this thesis. When light falls with resonant wavelength on the optical antennas, the electromagnetic field is amplified near this antennas. The resonant wavelength depends on the length of the antenna and on effective refractive index given by the ambient properties around the antenna. The contact surface with substrate (dielectric) is reduced by underetching the antenna and the effective refractive index is changed and thus the optical response of the antenna is changed.
|
97 |
Fotoluminiscence zesílená plazmonovými polaritony / Plasmon enhanced photoluminescenceÉdes, Zoltán January 2012 (has links)
Diplomová práce se zabývá fotoluminiscencí polovodičových materiálů zesílené plazmonovými polaritony. Je popsána základní teorie interakce mezi lokalizovanými povrchovými plazmonovými polaritony a fotoluminiscenčními látkami. Dva mechanismy, které mohou vést k fotoluminiscenci zesílené plazmonovými polaritony jsou diskutovány. Následně je popsán návrh aparatury pro měření fotoluminiscence a způsob její realizace. Funkčnost aparatury je ověřena měřením fotoluminiscenčních spekter objemového GaN, nanokrystalického Si a CdTe kvantových teček. Nakonec je zkoumána metoda přípravy vzorků sestávajících z kovových nanokuliček a fotoluminiscenčně aktívních CdTe kvantových teček.
|
98 |
Řízení teploty nanostruktur pomocí absorpce světla / Controlling of Nanostructure Temperature by Light AbsorptionKovács, Roland January 2014 (has links)
The thesis deals with a new versatile strategy which is aimed to heat up rapidly the nanostructures with the help of a focused light beam utilizing localized plasmons (collective oscillation of electrons). By local heating, the growth of the semiconductor nanowires can be initiated and controlled at any arbitrarily prespecified location down to the single nanostructure level in a chamber at room-temperature. The aim of the work is to study electromagnetic field in the selected structures, especially in metal nanospheres by using numeric calculations and computations of the thermal field in the vicinity of these illuminated nanostructures. Electromagnetic phenomena is simulated in Lumerical and the temperature field in COMSOL.
|
99 |
Analysis of Plasmonic Metastructures for Engineered Nonlinear NanophotonicsSaad-Bin-Alam, Md 30 April 2019 (has links)
This Master’s dissertation focuses on engineering artificial nanostructures, namely, arrays of metamolecules on a substrate (metasurfaces), with the goal to achieve the desired linear and nonlinear optical responses. Specifically,
a simple analytical model capable of predicting optical nonlinearity of an
individual metamolecule has been developed. The model allows one to estimate the nonlinear optical response (linear polarizability and nonlinear hyperpolarizabilities) of a metamolecule based on the knowledge of its shape,
dimensions, and material. In addition, a new experimental approach to measure hyperpolarizability has also been investigated. As another research effort, a 2D plasmonic metasurface with the collective behaviour of the metamolecules known as hybrid plasmonic-Fabry-Perot cavity and surface lattice resonances was designed, fabricated and optically characterized. We experimentally discovered a novel way of coupling the microcavity resonances and the diffraction orders of the plasmonic metamolecule arrays with the low-quality plasmon resonance to generate multiple sharp resonances with the higher quality factors. Finally, we experimentally observed and
demonstrated a record ultra-high-Q surface lattice resonance from a plasmonic metasurface. These novel results can be used to render highly efficient
nonlinear optical responses relying on high optical field localization, and can
serve as the stepping stone towards achieving practical artificial nanophotonic devices with tailored linear and nonlinear optical responses.
|
100 |
Pressure-induced Lipodystrophy from Elbow CompressionWinter, Randi P., Bibb, Lorin, Leicht, Stuart S., Dr. 12 April 2019 (has links)
Lipodystrophic syndromes encompass a wide range of both inherited and acquired conditions whereby adipose tissue is lost or absent. We report a rare case of acquired localized, pressure-induced lipodystrophy whereby continuous elbow pressure to the distal thighs led to marked tissue disfigurement. Pressure-induced lipodystrophy is a condition that likely results from protracted, localized pressure which ultimately decreases blood flow to the surrounding tissues. Overtime, the decreased perfusion is thought to induce adipocyte degeneration and eventual tissue deformation. Our findings resemble those described in the case reports of leg crossers’ dimples and lipoatrophia semicircularis and support current literature suggesting that prolonged pressure can indeed lead to significant adipose tissue loss and local architectural distortion. Our findings are significant because pressure-induced lipodystrophy represents an avoidable condition that can be circumvented if patients and physicians are knowledgeable of the underlying causes. We highlight a rare case report to educate the public as well as physicians about the causes of pressure-induced lipodystrophy and ultimately prevent future cases of unnecessary and unintended disfigurement.
|
Page generated in 0.0373 seconds