Spelling suggestions: "subject:"low allow""
11 |
Estudo comparativo do efeito de diferentes arames de adição em juntas soldadas de aços de fase dupla no comportamento em fadiga por flexãoMezzomo, Tiago January 2015 (has links)
Atualmente, no setor de máquinas agrícolas o uso de aços de alta resistência está começando a ganhar espaço e cada vez mais lembrado nos projetos estruturais; para atender as necessidades citadas acima e também para redução de emissão de poluentes. A utilização dos aços de alta resistência na indústria de implementos agrícolas está focada nos aços DP (Dual Phase), sendo este o objeto de estudo desta presente pesquisa. Este trabalho visa analisar o comportamento mecânico, priorizando a análise de resistência à fadiga em flexão de uniões soldadas através do processo de soldagem de metal de gás ativo (GMAW) utilizando dois tipos de arames como material de adição. Neste estudo foram utilizadas chapas metálicas de aços de alta resistência da marca DOCOL 1000 fabricado pela SSAB e os arames de adição fornecidos pela ESAB, sendo um usado largamente na indústria de maquinas agrícolas e o outro um fio especial desenvolvido para soldagem de aços de alta resistência e baixa liga. O processo de solda robotizada foi adotado para assegurar a homogeneidade dos cordões das juntas durante a obtenção das amostras. Para a análise das características mecânicas das amostras foi realizado o ensaio de flexão estático, caracterização macroestrutural, perfil de microdureza e ensaios de fadiga de flexão em quatro pontos. Os resultados mostraram que a vida em fadiga, por flexão em quatro pontos, nas juntas soldadas com o material de adição para aço carbono comum obteve uma melhor resposta em relação ao material de adição especial para soldagem de aços de alta resistência, porém pode-se verificar que ambas as curvas de fadiga respeitaram a curva de projeto conforme norma. / Nowadays, in the agricultural industry the use of high strength steels is being used each day more and more as well and increasingly coming in our mind in structural designs, to meet the requirements mentioned above and also to reduce the emission of pollutants. The highstrength steels application in the agricultural machinery industry is focused on the DP steels (Dual Phase), which is the subject of this present study. The focus of this work is analyze the mechanical behavior, prioritizing the deflection fatigue strength analysis on welded joints by Gas Metal Arc Welding (GMAW) process using two welding wire types. In this study it was used high strength steels sheet metal called DOCOL 1000, manufactured by SSAB and solder wires supplied by ESAB, and one widely used in the agricultural machinery industry for carbon steel welding and other a special wire developed for high strength. The robotic welding process was used to ensure the homogeneity of the weld bead on the samples manufacture process. For the mechanical characteristics analysis was done the static bending test, macrography, microhardness profile and deflection fatigue tests by four points. The results showed that the fatigue life, four-point bending, at welded joint used welding wire to carbon steel achieved a better result regarding a special welding wire to high strength steel, however, both fatigue curve respected project curve as British Standard.
|
12 |
Manufacturing of Welded Rings : Evaluation of Post-Weld Operations / Tillverkning av svetsade ringämnen : Utvärdering av svetsfogsoperationerAndersson, Jim January 2019 (has links)
Pipe and ring blanks can be produced in several different ways. Today's focus on environmental effects motivates companies to develop processes that are as efficient as possible in their production. Ringsvets AB is a company that produces pipe and ring blanks from a flat stock by rolling and welding the piece to make it stay in its desired form. The direct benefit of the method is the minimizing of material loss, and it has thereby both environmental and economical advantages. The downside of the method is that the processes involved changes the mechanical behavior of the ring, locally around the weld zone. The focus of this master thesis is the processes and how they affect the material, both microstructure and behavior. The processes involved are; rolling, welding, shaping, brushing, forging, heat treatment, and calibration. The purpose of this work was to elevate the knowledge and understanding of the processes at Ringsvets. The goals were to give a theoretical description of them along with practical test results and explanations of how and why they function in reality. A literature study has been conducted which provided a theoretical basis on how the material reacts on certain processes. Practical examination of samples from current production has been done to get evidence of how well the processes are used, and how well they function, in today's production. Lastly, the main focus of the thesis, an evaluation has been made; do theory and practice correlate, and should anything be changed to correlate better? The results showed that the first operations do not alter the material behavior to an unacceptable extent. Forging, on the other hand, gives the material a very high hardness in the weld zone, and that needs to be corrected. The following heat treatment should compensate for that in a perfect world, but does not in reality. The finished ring shows good properties in general but with places where the heat treatment has failed to correct the uneven behavior induced by earlier operations. The heat treatment requires some adjustments before it functions as intended. Some grainshas not been recrystallized which makes them very hard and non-ductile. Future tests using a higher temperature or a longer heat treatment time would reveal the best way to adjust the heat treatment to obtain the desired properties. Other changes in the processes could also be benecial. Interesting things to try and change would, for example, be the degree of deformation in the forging, which affects the recrystallization temperature. Notes should be taken that this examination is done on just one sample of just one size. Analyses of different samples of different sizes should be done to ensure of the accuracy of the examination.
|
13 |
Sulfide stress cracking resistance of API-X100 high strength low alloy steel in H2S environmentsAlmansour, Mansour A. 05 1900 (has links)
Sulfide Stress Cracking (SSC) resistance of the newly developed API-X100 High Strength Low Alloy (HSLA) steel was investigated in the NACE TM0177 "A" solution. The NACE TM0177 "A" solution is a hydrogen sulfide (H2S) saturated solution containing 5.0 wt.% sodium chloride (NaC1) and 0.5 wt.% acetic acid (CH3COOH). The aim of this thesis was to study the effect of microstructure, non-metallic inclusions and alloying elements of the X100 on H2S corrosion and SSC susceptibility. The study was conducted by means of electrochemical polarization techniques and constant load (proof ring) testing. Microstructural analysis and electrochemical polarization results for X100were compared with those for X80, an older generation HSLA steel. Uniaxial constant load SSC testing was conducted using X100 samples and the results were compared with those reported for older generation HSLA steels.
Addition of H2S to the NACE TM0177 "A" solution increased the corrosion rate of X100from 51.6 to 96.7 mpy. The effect of H2S on the corrosion rate was similar for X80. The corrosion rate for X80 increased from 45.2 to 80.2 mpy when H2S was added to the test solution. Addition of H2S enhanced the anodic kinetics by forming a catalyst (FeHSads) on the metal surface and as a result, shifted the anodic polarization curve to more current densities. Moreover, the cathodic half cell potential increased due to the decrease in pH, from 2.9 to 2.7, which shifted the cathodic polarization curve to more current densities. The increase in both the anodic and cathodic currents, after H2S addition, caused the rise in the corrosion current density.
In H2S saturated NACE TM-0177 "A" solution, the X100 steel corrosion rate was higher than the X80 steel by 20%. Longer phase boundaries and larger nonmetallic inclusions in the X100 microstructure generated more areas with dissimilar corrosion potentials and therefore, a stronger driving force for corrosion. Higher density of second phase regions and larger nonmetallic inclusions acted as an increased cathode area on the X100 surface which increased the cathodic current density and consequently, increased the corrosion current density.
Proof ring tests on the X100 gave a threshold stress value, C5th, of 46% YS, 343.1 MPa(49.7 ksi). The main failure was caused by SSC cracking. SSC nucleated at corrosion pits on the metal surface and microcracks in the metal body and propagated perpendicular to the applied stress. Hydrogen Induced Cracking (HIC) was observed in the X100. HIC cracks nucleated at banded martensite-ferrite interfaces and propagated along the rolling direction parallel to the applied tensile stress through the softer ferrite phase.
When compared to older HSLA grades, the X100 tested in this study had a high SSC susceptibility and therefore, is not be recommended for H2S service applications. The high X100 SSC susceptibility was caused by the material high corrosion rates in H2Smedia which formed corrosion pits that acted as crack initiation sites on the metal surface and provided more hydrogen that migrated into the steel. In addition, the X100
inhomogeneous microstructure provided a high density of hydrogen traps in front of the main crack tip which promoted SSC microcrack formation inside the metal. Microcracks in the metal body connected with the main crack tip that originated from corrosion pits which assisted SSC propagation.
|
14 |
The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steelsYang, Yongxu 21 October 2008
Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized.
In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy.
It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.
|
15 |
High Strain Rate Characterization of Advanced High Strength SteelsThompson, Alan January 2006 (has links)
The current research has considered the characterization of the high strain rate constitutive response of three steels: a drawing quality steel (DDQ), a high strength low alloy steel (HSLA350), and a dual phase steel (DP600). The stress-strain response of these steels were measured at seven strain rates between 0. 003 s<sup>-1</sup> and 1500 s<sup>-1</sup> (0. 003, 0. 1, 30, 100, 500, 1000, and 1500 s<sup>-1</sup>) and temperatures of 21, 150, and 300 °C. In addition, the steels were tested in both the undeformed sheet condition and the as-formed tube condition, so that tube forming effects could be identified. After the experiments were performed, the parameters of the Johnson-Cook and Zerilli-Armstrong constitutive models were fit to the results. <br /><br /> In order to determine the response of the steels at strain rates of 30 and 100 s<sup>-1</sup>, an intermediate rate tensile experiment was developed as part of this research using an instrumented falling weight impact facility (IFWI). An Instron tensile apparatus was used to perform the experiments at lower strain rates and a tensile split-Hopkinson bar was used to perform the experiments at strain rates above 500 s<sup>-1</sup> <br /><br /> A positive strain rate sensitivity was observed for each of the steels. It was found that, as the nominal strength of the steel increased, the strain rate sensitivity decreased. For an increase in strain rate from 0. 003 to 100 s<sup>-1</sup>, the corresponding increase in strength at 10% strain was found to be approximately 170, 130, and 110 MPa for DDQ, HSLA350, and DP600, respectively. <br /><br /> The thermal sensitivity was obtained for each steel as well, however no correlation was seen between strength and thermal sensitivity. For a rise in temperature from 21 to 300 °C, the loss in strength at 10% strain was found to be 200, 225, and 195 MPa for DDQ, HSLA350, and DP600, respectively for the 6 o?clock tube specimens. <br /><br /> For all of the alloys, a difference in the stress ? strain behaviour was seen between the sheet and tube specimens due to the plastic work that was imparted during forming of the tube. For the DP600, the plastic work only affected the work-hardening response. <br /><br /> It was found that both the HSLA350 and DDQ sheet specimens exhibited an upper/lower yield stress that was amplified as the strain rate increased. Consequently the actual strength at 30 and 100 s<sup>-1</sup> was obscured and the data at strain rates above 500 s<sup>-1</sup> to be unusable for constitutive modeling. This effect was not observed in any of the tube specimens or the DP600 sheet specimens <br /><br /> For each of the steels, both the Johnson-Cook and Zerilli-Armstrong models fit the experimental data well; however, the Zerilli-Armstrong fit was slightly more accurate. Numerical models of the IFWI and the TSHB tests were created to assess whether the experimental results could be reproduced using the constitutive fits. Both numerical models confirmed that the constitutive fits were applied correctly.
|
16 |
The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steelsYang, Yongxu 21 October 2008 (has links)
Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized.
In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy.
It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.
|
17 |
Sulfide stress cracking resistance of API-X100 high strength low alloy steel in H2S environmentsAlmansour, Mansour A. 05 1900 (has links)
Sulfide Stress Cracking (SSC) resistance of the newly developed API-X100 High Strength Low Alloy (HSLA) steel was investigated in the NACE TM0177 "A" solution. The NACE TM0177 "A" solution is a hydrogen sulfide (H2S) saturated solution containing 5.0 wt.% sodium chloride (NaC1) and 0.5 wt.% acetic acid (CH3COOH). The aim of this thesis was to study the effect of microstructure, non-metallic inclusions and alloying elements of the X100 on H2S corrosion and SSC susceptibility. The study was conducted by means of electrochemical polarization techniques and constant load (proof ring) testing. Microstructural analysis and electrochemical polarization results for X100were compared with those for X80, an older generation HSLA steel. Uniaxial constant load SSC testing was conducted using X100 samples and the results were compared with those reported for older generation HSLA steels.
Addition of H2S to the NACE TM0177 "A" solution increased the corrosion rate of X100from 51.6 to 96.7 mpy. The effect of H2S on the corrosion rate was similar for X80. The corrosion rate for X80 increased from 45.2 to 80.2 mpy when H2S was added to the test solution. Addition of H2S enhanced the anodic kinetics by forming a catalyst (FeHSads) on the metal surface and as a result, shifted the anodic polarization curve to more current densities. Moreover, the cathodic half cell potential increased due to the decrease in pH, from 2.9 to 2.7, which shifted the cathodic polarization curve to more current densities. The increase in both the anodic and cathodic currents, after H2S addition, caused the rise in the corrosion current density.
In H2S saturated NACE TM-0177 "A" solution, the X100 steel corrosion rate was higher than the X80 steel by 20%. Longer phase boundaries and larger nonmetallic inclusions in the X100 microstructure generated more areas with dissimilar corrosion potentials and therefore, a stronger driving force for corrosion. Higher density of second phase regions and larger nonmetallic inclusions acted as an increased cathode area on the X100 surface which increased the cathodic current density and consequently, increased the corrosion current density.
Proof ring tests on the X100 gave a threshold stress value, C5th, of 46% YS, 343.1 MPa(49.7 ksi). The main failure was caused by SSC cracking. SSC nucleated at corrosion pits on the metal surface and microcracks in the metal body and propagated perpendicular to the applied stress. Hydrogen Induced Cracking (HIC) was observed in the X100. HIC cracks nucleated at banded martensite-ferrite interfaces and propagated along the rolling direction parallel to the applied tensile stress through the softer ferrite phase.
When compared to older HSLA grades, the X100 tested in this study had a high SSC susceptibility and therefore, is not be recommended for H2S service applications. The high X100 SSC susceptibility was caused by the material high corrosion rates in H2Smedia which formed corrosion pits that acted as crack initiation sites on the metal surface and provided more hydrogen that migrated into the steel. In addition, the X100
inhomogeneous microstructure provided a high density of hydrogen traps in front of the main crack tip which promoted SSC microcrack formation inside the metal. Microcracks in the metal body connected with the main crack tip that originated from corrosion pits which assisted SSC propagation.
|
18 |
Estudo comparativo do efeito de diferentes arames de adição em juntas soldadas de aços de fase dupla no comportamento em fadiga por flexãoMezzomo, Tiago January 2015 (has links)
Atualmente, no setor de máquinas agrícolas o uso de aços de alta resistência está começando a ganhar espaço e cada vez mais lembrado nos projetos estruturais; para atender as necessidades citadas acima e também para redução de emissão de poluentes. A utilização dos aços de alta resistência na indústria de implementos agrícolas está focada nos aços DP (Dual Phase), sendo este o objeto de estudo desta presente pesquisa. Este trabalho visa analisar o comportamento mecânico, priorizando a análise de resistência à fadiga em flexão de uniões soldadas através do processo de soldagem de metal de gás ativo (GMAW) utilizando dois tipos de arames como material de adição. Neste estudo foram utilizadas chapas metálicas de aços de alta resistência da marca DOCOL 1000 fabricado pela SSAB e os arames de adição fornecidos pela ESAB, sendo um usado largamente na indústria de maquinas agrícolas e o outro um fio especial desenvolvido para soldagem de aços de alta resistência e baixa liga. O processo de solda robotizada foi adotado para assegurar a homogeneidade dos cordões das juntas durante a obtenção das amostras. Para a análise das características mecânicas das amostras foi realizado o ensaio de flexão estático, caracterização macroestrutural, perfil de microdureza e ensaios de fadiga de flexão em quatro pontos. Os resultados mostraram que a vida em fadiga, por flexão em quatro pontos, nas juntas soldadas com o material de adição para aço carbono comum obteve uma melhor resposta em relação ao material de adição especial para soldagem de aços de alta resistência, porém pode-se verificar que ambas as curvas de fadiga respeitaram a curva de projeto conforme norma. / Nowadays, in the agricultural industry the use of high strength steels is being used each day more and more as well and increasingly coming in our mind in structural designs, to meet the requirements mentioned above and also to reduce the emission of pollutants. The highstrength steels application in the agricultural machinery industry is focused on the DP steels (Dual Phase), which is the subject of this present study. The focus of this work is analyze the mechanical behavior, prioritizing the deflection fatigue strength analysis on welded joints by Gas Metal Arc Welding (GMAW) process using two welding wire types. In this study it was used high strength steels sheet metal called DOCOL 1000, manufactured by SSAB and solder wires supplied by ESAB, and one widely used in the agricultural machinery industry for carbon steel welding and other a special wire developed for high strength. The robotic welding process was used to ensure the homogeneity of the weld bead on the samples manufacture process. For the mechanical characteristics analysis was done the static bending test, macrography, microhardness profile and deflection fatigue tests by four points. The results showed that the fatigue life, four-point bending, at welded joint used welding wire to carbon steel achieved a better result regarding a special welding wire to high strength steel, however, both fatigue curve respected project curve as British Standard.
|
19 |
Effect of chloride on environmentally assisted cracking of low alloy steels in oxygenated high temperature waterHerbst, Matthias G. J. January 2014 (has links)
The aim of this thesis was to derive a better understanding with regard to the effects of chloride on the general corrosion behaviour of low-alloy steels (LAS) in oxygenated high-temperature water (HTW) and to investigate the underlying mechanisms for crack initiation and propaga-tion due to chloride assisted environmentally assisted cracking (EAC). Therefore, systematic investigations on the effect of chloride on the EAC behaviour of LAS were performed to un-derstand and elucidate the underlying mechanisms. The overall thesis is divided into three parts focussing on the effect of chloride on: i) general corrosion, ii) crack initiation, and iii) crack growth of low-alloy steels in oxygenated high-temperature water. Studies on the effect of chloride on the general corrosion behaviour were performed by immer-sion tests that were evaluated using electrochemical monitoring techniques and different post-test investigation methods like SEM, ToF-SIMS, and others. From the performed investiga-tions it is concluded that the presence of small amounts of chloride in oxygenated HTW causes an incorporation of chloride into the oxide layer, a thinning of the oxide layer thickness, and pronounced pitting. The crack initiation susceptibility of LAS was investigated using CERT tests. These tests showed an increased number of crack initiation locations and a decrease of the elongation at fracture with increasing chloride concentrations. Crack growth rate tests clearly demonstrated that not the increase in the chloride concentration per se, but the conjoint occurrence of an active or dormant crack and increased chloride con-centration causes an increase in the observed crack growth rates. For practical applications of LAS in oxygenated HTW this means that short term transients seem to be not harmful regarding component integrity, but long term increased chloride con-centrations should by prohibited since they cause increased general corrosion of LAS. Taking crack initiation and crack growth into consideration, the conjoint occurrence of increased chlo-ride concentrations and mechanical straining at stress levels above the yield strength should be avoided.
|
20 |
Estudo comparativo do efeito de diferentes arames de adição em juntas soldadas de aços de fase dupla no comportamento em fadiga por flexãoMezzomo, Tiago January 2015 (has links)
Atualmente, no setor de máquinas agrícolas o uso de aços de alta resistência está começando a ganhar espaço e cada vez mais lembrado nos projetos estruturais; para atender as necessidades citadas acima e também para redução de emissão de poluentes. A utilização dos aços de alta resistência na indústria de implementos agrícolas está focada nos aços DP (Dual Phase), sendo este o objeto de estudo desta presente pesquisa. Este trabalho visa analisar o comportamento mecânico, priorizando a análise de resistência à fadiga em flexão de uniões soldadas através do processo de soldagem de metal de gás ativo (GMAW) utilizando dois tipos de arames como material de adição. Neste estudo foram utilizadas chapas metálicas de aços de alta resistência da marca DOCOL 1000 fabricado pela SSAB e os arames de adição fornecidos pela ESAB, sendo um usado largamente na indústria de maquinas agrícolas e o outro um fio especial desenvolvido para soldagem de aços de alta resistência e baixa liga. O processo de solda robotizada foi adotado para assegurar a homogeneidade dos cordões das juntas durante a obtenção das amostras. Para a análise das características mecânicas das amostras foi realizado o ensaio de flexão estático, caracterização macroestrutural, perfil de microdureza e ensaios de fadiga de flexão em quatro pontos. Os resultados mostraram que a vida em fadiga, por flexão em quatro pontos, nas juntas soldadas com o material de adição para aço carbono comum obteve uma melhor resposta em relação ao material de adição especial para soldagem de aços de alta resistência, porém pode-se verificar que ambas as curvas de fadiga respeitaram a curva de projeto conforme norma. / Nowadays, in the agricultural industry the use of high strength steels is being used each day more and more as well and increasingly coming in our mind in structural designs, to meet the requirements mentioned above and also to reduce the emission of pollutants. The highstrength steels application in the agricultural machinery industry is focused on the DP steels (Dual Phase), which is the subject of this present study. The focus of this work is analyze the mechanical behavior, prioritizing the deflection fatigue strength analysis on welded joints by Gas Metal Arc Welding (GMAW) process using two welding wire types. In this study it was used high strength steels sheet metal called DOCOL 1000, manufactured by SSAB and solder wires supplied by ESAB, and one widely used in the agricultural machinery industry for carbon steel welding and other a special wire developed for high strength. The robotic welding process was used to ensure the homogeneity of the weld bead on the samples manufacture process. For the mechanical characteristics analysis was done the static bending test, macrography, microhardness profile and deflection fatigue tests by four points. The results showed that the fatigue life, four-point bending, at welded joint used welding wire to carbon steel achieved a better result regarding a special welding wire to high strength steel, however, both fatigue curve respected project curve as British Standard.
|
Page generated in 0.0667 seconds