• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 26
  • 22
  • 15
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Human models of Parkinson's disease present impaired autophagy, mitophagy and mitochondria energy metabolism / パーキンソン病のヒト疾患モデルは、オートファジー、ミトファジー、およびミトコンドリアエネルギー代謝の障害を呈する

ARIAS, Jonathan 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第20820号 / 生博第389号 / 新制||生||51(附属図書館) / 京都大学大学院生命科学研究科高次生命科学専攻 / (主査)教授 米原 伸, 教授 垣塚 彰, 教授 HEJNA James / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
22

The Role of the ELAVL Family of RNA-Binding Proteins in LRRK2-Dependent Models of Parkinson's Disease

Negeri, Olanta 07 February 2024 (has links)
Parkinson's disease (PD) is the second most common neurodegenerative disease, yet it has no cure. It is characterized by the loss of dopaminergic neurons and accumulation of dense aggregates, primarily composed of α-synuclein protein. Many causative genes have been identified including SNCA, encoding α-synuclein, and Leucine-rich-repeat kinase 2 (LRRK2). The LRRK2 G2019S mutation is known to cause hyperactive kinase activity, but its cellular functions, including its kinase substrates, remain poorly understood. PD has many risk factors including environmental and genetic modifiers. Polymorphisms in the Embryonic lethal-abnormal vision-like 4 (ELAVL4) gene modify PD age-of-onset or susceptibility. Incidentally, a genetic screen in Drosophila identified an ELAVL homologue as required for LRRK2-induced pathology. Therefore, we hypothesized that LRRK2 phosphorylates ELAVL4 to control phenotypes relevant to PD. We discovered that three neuronal ELAVLs including ELAVL4 (also known as HuD) bind to, and post-transcriptionally regulate mRNA encoding α-synuclein and LRRK2. We also show that LRRK2 phosphorylates HuD and its homologues HuB and HuC. This controls binding of nELAVLs (i.e., HuB, HuC, and HuD) to mRNA and post-transcriptionally regulates mRNA abundance and splicing in the mouse midbrain. In mice, the complex interaction between HuD and Lrrk2 G2019S is associated with motor deficits, dopaminergic neuron loss, and accumulated α-synuclein protein levels. Targets of nELAVLs are also selectively misregulated in iPSC-derived neurons and tissues from PD patients. In a model of PD-relevant inflammation, we also show that the ubiquitously expressed ELAVL homologue, HuR, controls LRRK2 protein levels. We show that mice lacking Lrrk2 are more susceptible to an acute model of dextran sodium sulfate (DSS) chemical-induced colitis. Lrrk2-deficient mice treated with DSS also show accumulated α-synuclein in brain tissue. Using in vitro models and mouse tissue we show that LRRK2 controls HuR binding to RNA probes and to the proinflammatory cytokine Tnfa in colon tissue, and this has implications for intestinal pathology relevant to PD. Together, this suggests that misregulation of ELAVLs may be implicated in neurodegeneration and inflammation observed in Parkinson's disease.
23

MODELING LRRK2-ASSOCIATED PARKINSON’S DISEASE IN C. ELEGANS

Yao, Chen 22 May 2012 (has links)
No description available.
24

Auswirkungen des LRRK2-Knockdown durch RNA-Interferenz auf die murine dopaminerge Zelllinie MN9D

Fransecky, Lars 17 July 2009 (has links) (PDF)
Mutationen im Protein LRRK2 wurden im Zusammenhang mit klinischen Symptomen beschrieben, die dem Idiopathischen Parkinsonsyndrom (IPS) nahezu gleichen. So findet sich neben vielen anderen Mutationen die häufigste pathogene Mutation für das IPS im LRRK2-Gen. Die Aufklärung der molekularbiologischen Mechanismen, die zur Pathologie der spezifischen Neurodegeneration in der Substantia nigra Pars Compacta (SNpc) und somit zur Idiopathischen Parkinsonssyndrom führen, ist mit der Hoffnung auf kausale und kurative Therapieansätze verbunden. In dieser medizinischen Doktorarbeit soll daher versucht werden, die biologische Funktion des LRRK2 in einem dopaminergen Mauszellmodell näher zu beschreiben. Hierfür soll die genetische Aktivität des LRRK2 in mesenzephalen, sogenannten MN9D-Zellen reduziert werden, indem der Mechanismus der RNA-Interferenz in vitro durch Transfektion von siRNA angestoßen wird. Durch die Reduktion der LRRK2-Aktivität sollen Veränderungen in den MN9D-Zellen induziert und diese objektiviert werden. Die Darstellung der Beobachtungen konzentriert sich auf die transkriptionelle Expression von Genen des Zellzyklus sowie der neuralen und dopaminergen Differenzierung (Tyrosinhydroxylase, Nestin und β-Tubulin) durch PCR. Die Proliferation der Zellen vor und nach den RNA-Interferenzexperimenten soll global durch MTT- und BrdU-Test gemessen werden.
25

Loss of lrrk2 impairs dopamine catabolism, cell proliferation, and neuronal regeneration in the zebrafish brain

Suzzi, Stefano 20 September 2017 (has links) (PDF)
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a major cause of Parkinson’s disease (PD), which is why modelling PD by replicating effects in animal models attracts great interest. However, the exact mechanisms of pathogenesis are still unclear. While a gain-of-function hypothesis generally receives consensus, there is evidence supporting an alternative loss-of-function explanation. Yet, neither overexpression of the human wild-type LRRK2 protein or its pathogenic variants, nor Lrrk2 knockout recapitulates key aspects of human PD in rodent models. Furthermore, there is conflicting evidence from morpholino knockdown studies in zebrafish regarding the extent of zygotic developmental abnormalities. Because reliable null mutants may be useful to infer gene function, and because the zebrafish is a more tractable laboratory vertebrate system than rodents to study disease mechanisms in vivo, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genomic editing was used to delete the ~60-kbp-long zebrafish lrrk2 locus containing the entire open reading frame. Constitutive removal of both the maternal and the zygotic lrrk2 function (mzLrrk2 individuals) causes a pleomorphic phenotype in the larval brain at 5 days post-fertilisation (dpf), including increased cell death, delayed myelination, and reduced and morphologically abnormal microglia/leukocytes. However, the phenotype is transient, spontaneously attenuating or resolving by 10 dpf, and the mutants are viable and fertile as adults. These observations are mirrored by whole-larva transcriptome data, revealing a more than eighteen-fold drop in the number of differentially expressed genes in mzLrrk2 larvae from 5 to 10 dpf. Additionally, analysis of spontaneous swimming activity shows hypokinesia as a predictor of Lrrk2 protein deficiency in larvae, but not in adult fish. Because the catecholaminergic (CA) neurons are the main clinically relevant target of PD in humans, the CA system of larvae and adult fish was analysed on both cellular and metabolic level. Despite an initial developmental delay at 5 dpf, the CA system is structurally intact at 10 dpf and later on in adult fish aged 6 and 11 months. However, monoamine oxidase (Mao)-dependent degradation of biogenic amines, including dopamine, is increased in older fish, possibly suggesting impaired synaptic transmission or a leading cause of cell damage in the long term. Furthermore, decreased mitosis rate in the larval brain was found, in the anterior portion only at 5 dpf, strongly and throughout the whole organ at 10 dpf. Conceivably, lrrk2 may have a more general role in the control of cell proliferation during early development and a more specialised one in the adult stage, possibly conditional, for example upon brain damage. Because the zebrafish can regenerate lost neurons, it represents a unique opportunity to elucidate the endogenous processes that may counteract neurodegeneration in a predisposing genetic background. To this aim, the regenerative potential of the adult telencephalon upon stab injury was tested in mzLrrk2 fish. Indeed, neuronal proliferation was reduced, suggesting that a complete understanding of Lrrk2 biology may not be fully appreciated without recreating challenging scenarios. To summarise, the present results demonstrate that loss of lrrk2 has an early effect on zebrafish brain development that is later often compensated. Nonetheless, perturbed aminergic catabolism, and specifically increased Mao-dependent aminergic degradation, is reported for the first time in a LRRK2 knockout model. Furthermore, a link between Lrrk2 and the control of basal cell proliferation in the brain, which may become critical under challenging circumstances such as brain injury, is proposed. Future directions should aim at exploring which brain cell types are specifically affected by the mzLrrk2 hypoproliferative phenotype and the resulting consequences on a circuitry level, particularly in very old fish (i.e., over 2 years of age).
26

Auswirkungen des LRRK2-Knockdown durch RNA-Interferenz auf die murine dopaminerge Zelllinie MN9D

Fransecky, Lars 14 July 2009 (has links)
Mutationen im Protein LRRK2 wurden im Zusammenhang mit klinischen Symptomen beschrieben, die dem Idiopathischen Parkinsonsyndrom (IPS) nahezu gleichen. So findet sich neben vielen anderen Mutationen die häufigste pathogene Mutation für das IPS im LRRK2-Gen. Die Aufklärung der molekularbiologischen Mechanismen, die zur Pathologie der spezifischen Neurodegeneration in der Substantia nigra Pars Compacta (SNpc) und somit zur Idiopathischen Parkinsonssyndrom führen, ist mit der Hoffnung auf kausale und kurative Therapieansätze verbunden. In dieser medizinischen Doktorarbeit soll daher versucht werden, die biologische Funktion des LRRK2 in einem dopaminergen Mauszellmodell näher zu beschreiben. Hierfür soll die genetische Aktivität des LRRK2 in mesenzephalen, sogenannten MN9D-Zellen reduziert werden, indem der Mechanismus der RNA-Interferenz in vitro durch Transfektion von siRNA angestoßen wird. Durch die Reduktion der LRRK2-Aktivität sollen Veränderungen in den MN9D-Zellen induziert und diese objektiviert werden. Die Darstellung der Beobachtungen konzentriert sich auf die transkriptionelle Expression von Genen des Zellzyklus sowie der neuralen und dopaminergen Differenzierung (Tyrosinhydroxylase, Nestin und β-Tubulin) durch PCR. Die Proliferation der Zellen vor und nach den RNA-Interferenzexperimenten soll global durch MTT- und BrdU-Test gemessen werden.
27

Etude de la coopération de l'alpha-synucléine et de LRRK2 dans les dysfonctions mitochondriales dans la Maladie de Parkinson / Alpha-synuclein and LRRK2’s Cooperation in Mitochondrial Dysfunctions in Parkinson’s Disease

Gardier, Camille 07 November 2019 (has links)
Les protéines alpha-synucléine (αsyn) et « Leucine-Rich Repeat Kinase 2 » (LRRK2), jouent toutes deux un rôle majeur dans la physiopathologie des formes sporadiques et génétiques de la maladie de Parkinson (MP). En particulier, la mutation G2019S de LRRK2, située dans son domaine kinase, est la cause la plus fréquente de formes génétiques de la MP. Il a été suggéré que l’αsyn et LRRK2 agiraient de concert pour induire la neurodégénérescence des neurones dopaminergiques de la substance noire pars compacta (SNpc) dans cette maladie. Dans notre laboratoire, il a été montré qu’en effet LRRK2 G2019S pouvait potentialiser la mort des neurones dopaminergiques induite par l’αsyn dans la SNpc de rats, confirmant l’existence d’une interaction fonctionnelle entre les deux protéines. De plus, il est connu depuis plusieurs années que les dysfonctionnements mitochondriaux joueraient un rôle central dans la MP. De nombreuses études ont montré que les deux protéines individuellement pouvaient entraîner des dysfonctionnements de cet organite. Notre hypothèse est donc que l’interaction fonctionnelle entre l’αsyn et LRRK2 pourrait passer par une action commune sur la mitochondrie. Nous avons ainsi pu montrer in vitro, dans des cultures primaires de neurones de rat surexprimant l’αsyn et LRRK2, que LRRK2 G2019S, mais pas sa forme sauvage (WT) ni sa forme sans activité kinase (DK, Dead Kinase) augmentait significativement le nombre de neurones présentant un marquage pathologique de l’αsyn (phospho-S129), sans induire de mort cellulaire. Au niveau cellulaire et moléculaire, une diminution significative du taux de production d’ATP mitochondrial a été mise en évidence dans les cellules co-exprimant LRRK2 (WT, G2019S, et encore plus DK) avec l’αsyn par rapport à celles exprimant l’αsyn seule, ceci sans différence dans la quantité totale d’ATP. Les mitochondries des neurones co-exprimant LRRK2 et l’αsyn parcouraient également de plus longues distances le long des neurites que celles des neurones exprimant uniquement l’αsyn. Pour résumer, dans ce modèle in vitro, LRRK2 augmente donc l’accumulation somatique d’une forme pathologique de l’αsyn, d’une manière dépendante de son activité kinase. Dans ces conditions, les mitochondries sont capables de maintenir leur homéostasie, notamment en adaptant leur production d’ATP. Cela semble indiquer l’existence d’un stress mitochondrial modéré, induit par la co-expression de l’αsyn et de LRRK2. / The proteins alpha-synuclein (αsyn) and Leucine-Rich Repeat Kinase 2 (LRRK2) both play major roles in the physiopathology of sporadic and genetic forms of Parkinson’s Disease (PD). In particular, the G2019S mutation of LRRK2, located in its kinase domain, is the most prevalent cause of genetic forms of PD. It has been suggested that αsyn and LRRK2 could act together to induce the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the pathogenesis of this disease. In our laboratory, it has been shown that G2019S LRRK2 could increase the dopaminergic cell loss induced by αsyn in the SNpc of rats, confirming the existence of a functional interaction between the two proteins. Moreover, it has been known for years that mitochondrial dysfunction played a major role in PD. Many studies showed that both LRRK2 and αsyn induced mitochondrial dysfunction. Therefore, we hypothesized that the functional interaction between αsyn and LRRK2 could take place through a common effect on mitochondria. We showed in vitro, in primary rat neurons, that G2019S LRRK2, but not the wild type (WT) form nor the dead kinase mutant (DK), significantly increased the number of neurons expressing a pathological form of αsyn (phospho-S129). This was not associated with any cell loss. At the cellular and molecular levels, there was a significant decrease in the mitochondrial ATP production rate in cells co-expressing LRRK2 (WT, G2019S and even more pronounced with DK) with αsyn, without any change in total ATP levels. The mean distance travelled by mitochondria along neurites was higher in neurons co-expressing αsyn and LRRK2 than in neurons only expressing αsyn. To summarize, in this in vitro model LRRK2 increases the somatic accumulation of a pathologic form of αsyn, in a kinase-dependent manner. In these conditions, mitochondria are able to maintain their homeostasis, in particular by adapting their ATP production rate. This seems to indicate a moderate mitochondrial stress induced by the co-expression of αsyn and LRRK2.
28

Analysis of zebrafish Lrrk2 loss-of-function during brain development and adult brain regeneration

Wirsching, Paul 03 June 2024 (has links)
The neurodegenerative disorder Parkinson's Disease (PD) represents both a major socioeco-nomic challenge and an individual burden for many patients. Despite major efforts, neither satisfactory explanations of the pathogenesis of PD, nor disease-modifying drugs have been developed to date. Mutations of the multidomain kinase LRRK2 represent the overall most common cause of he-reditary PD. Furthermore, LRRK2 mutations have been linked to dysregulations of the immune system such as inflammatory bowel disease, cancer, or the susceptibility towards mycobacte-rial infections. Several pathogenic point mutations have been identified that – directly or indi-rectly – lead to a pathological gain-of-function of the protein’s kinase domain. Despite recent advances, the physiological functions of LRRK2, as well as the underlying processes of LRRK2-mediated pathologies, remain largely unknown. Much research effort has aimed at generating reliable animal models for the study of LRRK2. Nevertheless, neither loss-of-function of the gene, nor overexpression of normal or mutant LRRK2, has yielded definitive results. Previous work from our research group on zebrafish (Danio rerio) has generated two genetic lrrk2 knock-out lines using different mutagenesis strat-egies: lrrk2TILLING and lrrk2CRISPR (Ahrendt, 2011; Suzzi, 2017). These studies’ results were par-tially contradictory, and the described phenotypes were not stable. Whilst this previous work investigated lrrk2 loss-of-function, so far, no genetic knock-in line carrying one of the multiple known pathogenic lrrk2 mutations, has been reported in zebrafish. Therefore, this work aimed to further investigate the effects of Lrrk2-deficiency in zebrafish and to establish a genetic knock-in of the common pathogenic G2019S substitution to model the genotype of PD patients more accurately. A variety of methods was applied to achieve these aims. Immunohistochemistry and conventional histology studies were performed on zebrafish brains and kidneys at different developmental stages, both under physiological conditions and following the induction of brain regeneration. Since the zebrafish’s neuroregenerative capabil-ity is closely linked to an initial neuroinflammation, and previous studies on lrrk2 knock-out zebrafish have suggested an impaired immune response and reduced brain regeneration, the neuroinflammation and neuroregeneration of adult lrrk2TILLING zebrafish were investigated by inducing a telencephalic stab-lesion and a subsequent BrdU-pulse-chase analysis. To investi-gate functional effects of the gene knock-out, a set of behavioral experiments was performed. Using CRISPR/Cas9 genome editing, the basis for a knock-in of the G2019S substitution was established. Immunohistochemistry analyses of larval and adult zebrafish brains were performed in a set of experiments. By quantifying all mitotic cells in larval brains at different time points, the basal brain proliferation levels during development were analyzed, as well as the levels of constitutive neurogenesis during adulthood. Under physiological conditions, basal brain prolif-eration was found unimpaired in Lrrk2-deficient zebrafish. Similarly, the number of microglia found in the telencephalon of Lrrk2-deficient zebrafish was not reduced under physiological conditions, although one experimental group showed signs of neuroinflammation. Upon induc-tion of a traumatic brain injury in adult fish, neither the trauma-induced proliferation of leuko-cytes, nor the number of regenerated neurons were altered in Lrrk2-deficient animals. A multi-dimensional behavioral analysis of Lrrk2-deficient zebrafish revealed no significant constraints. The total swimming distance, average velocity and ratio of mobility states were unimpaired upon lrrk2-knock-out, as was the fish’s exploratory behavior in an anxiety model using a light-dark-box. In a test for social preference, Lrrk2-deficient and wild-type zebrafish showed the same tendency to join a group of conspecific animals, suggesting no major deficits in overall social interaction. In contrast to these preserved functions, adult Lrrk2-deficient kidneys revealed a pronounced accumulation of vacuole-like particles in the proximal renal tubules, a finding that may indicate disruptions in the endolysosomal pathway and that is in line with phenotypes described in LRRK2-deficient rodents as well as with the side effects induced by pharmacological LRRK2 inhibitors. These findings represent a promising lead for future exploration. During this work a CRISPR/Cas9 target site with high cleavage efficiency was established within the Lrrk2 kinase domain of freshly spawned zebrafish eggs. In combination with recent advances in CRISPR methodology, these results provide an opportunity for the generation of a genetic Lrrk2-G2019S knock-in line in zebrafish. In summary, this work found Lrrk2-deficient zebrafish unimpaired regarding various physiolog-ical functions. While in line with previously reported results, a satisfactory explanation for Lrrk2-mediatied pathogenesis is still lacking. Morphological alterations of Lrrk2-deficient kidneys hint towards perturbations in the lysosomal homeostasis, and a promising target for future re-search. Modelling human LRRK2 genotypes more precisely will hopefully provide further in-sights into the enigma of LRRK2 and its link to neurodegeneration. / Die neurodegenerative Erkrankung Morbus Parkinson (Idiopathisches Parkinson-Syndrom, IPS) stellt sowohl eine individuelle Belastung für betroffene Menschen als auch eine große sozio-ökonomische Herausforderung für die Gesellschaft dar. Trotz großer Anstrengungen konnten bisher weder zufriedenstellende pathophysiologische Erklärungen des IPS, noch krankheits-modulierende Medikamente entwickelt werden. Mutationen der Kinase LRRK2 sind die insgesamt häufigste Ursache für erbliche Parkinson-Syndrome. Darüber hinaus wurden LRRK2-Mutationen mit immundysregulatorischen Syndro-men wie chronisch-entzündlichen Darmerkrankungen, Malignomen oder der Anfälligkeit ge-genüber Mykobakterien-Infektionen in Verbindung gebracht. Verschiedene pathogene Punktmutationen von LRRK2 sind bekannt. Diese führen – direkt oder indirekt – zu einer pa-thologischen Überaktivierung seiner Kinasedomäne. Trotz jüngster Fortschritte in der For-schung sind die Funktionen von LRRK2 und die Prozesse, die zu den LRRK2-vermittelten Pathologien führen, weiterhin weitgehend unbekannt. Viele Studien haben sich um die Entwicklung zuverlässiger Tiermodelle für die Untersuchung von LRRK2 bemüht. Dennoch haben weder die Untersuchung eines Gen-Funktionsverlusts noch die Überexpression von normalem oder mutiertem LRRK2 bislang zu eindeutigen Ergeb-nissen geführt. Frühere Arbeiten unserer Arbeitsgruppe haben in Zebrafischen (Zebrabärbling, Danio rerio) zwei genetische lrrk2-Knockout-Linien mit unterschiedlichen Mutagenesestrate-gien erzeugt: lrrk2TILLING und lrrk2CRISPR (Ahrendt, 2011; Suzzi, 2017). Die Ergebnisse dieser Studien widersprachen sich teilweise, und die beschriebenen Phänotypen waren nicht stabil reproduzierbar. Während alle bisherigen Arbeiten einen Funktionsverlust von Lrrk2 untersuch-ten, wurde bisher noch keine genetische Knock-in-Linie im Zebrafisch publiziert, die eine der zahlreichen bekannten pathogen-überaktivierenden LRRK2-Mutationen trägt. Ziel dieser Arbeit war es daher zum einen, die Auswirkungen eines Lrrk2-Funktionsverlusts in Zebrafischen weiter zu untersuchen, und zum anderen eine genetische Knock-in-Linie der häufigen pathogenen G2019S-Mutation zu etablieren, um den Genotyp menschlicher Parkin-son-Patienten präziser zu modellieren. Um diese Ziele zu erreichen, wurde eine Vielzahl von Methoden angewandt. Es wurden im-munhistochemische und konventionelle histologische Untersuchungen an Gehirnen und Nie-ren von Zebrafischen in verschiedenen Entwicklungsstadien durchgeführt, sowohl unter phy-siologischen Bedingungen als auch nach der Induktion einer Gehirnregeneration. Da die Fä-higkeit des Zebrafischs zur umfassenden Neuroregeneration durch eine initiale Neuroinflam-mation vermittelt wird und frühere Studien an lrrk2-Knockout-Zebrafischen in Folge traumati-scher Hirnverletzungen eine beeinträchtigte Immunreaktion und eine verringerte Neurorege-neration feststellen konnten, wurden die posttraumatische Neuroinflammation und die Neuroregeneration von adulten lrrk2TILLING-Zebrafischen untersucht, indem eine Stichverlet-zung des Großhirns induziert und eine anschließende BrdU-Pulse-Chase-Analyse durchge-führt wurde. Um die funktionellen Auswirkungen des Gen-Knockouts zu untersuchen, wurde eine Reihe von Verhaltensexperimenten durchgeführt. Mit Hilfe von CRISPR/Cas9-Genom-Editierung wurde die Grundlage für den Knock-in der G2019S-Mutation geschaffen. In einer ersten Reihe von Experimenten wurden larvale und adulte Zebrafischgehirne immun-histochemisch analysiert. Durch die Quantifizierung aller zerebraler mitotischer Zellen zu ver-schiedenen Zeitpunkten wurden die basale Hirnproliferation während der larvalen Entwicklung sowie die konstitutive Neurogenese im Erwachsenenalter analysiert. Unter physiologischen Bedingungen war die basale Hirnproliferation bei Lrrk2-defizienten Zebrafischen nicht beein-trächtigt. Auch die Anzahl der Mikroglia im Telenzephalon der Lrrk2-defizienten Zebrafische war unter physiologischen Bedingungen nicht verringert, obwohl eine Versuchsgruppe Anzei-chen einer Neuroinflammation zeigte. Infolge einer gezielten Verletzung einer Großhirnhemi-sphäre waren bei Lrrk2-defizienten Tieren weder die traumabedingte Proliferation von Leuko-zyten noch die Anzahl der anschließend regenerierten Neuronen verändert. Eine Verhaltensanalyse von Lrrk2-defizienten Zebrafischen ergab keine signifikanten Ein-schränkungen. Die Gesamtschwimmdistanz, die Durchschnittsgeschwindigkeit und das Ver-hältnis verschiedener Mobilitätszustände waren durch den Lrrk2-Knock-out unbeeinträchtigt, ebenso wie das Erkundungsverhalten der Fische in einem Angstmodell mit einer Hell-Dunkel-Kammer. In einem Test auf soziale Präferenz zeigten Lrrk2-defiziente und Wildtyp-Zebrafische die gleiche Tendenz, sich einer Gruppe von Artgenossen anzuschließen, was auf keine größeren Defizite in der allgemeinen sozialen Interaktion hindeutet. Im Gegensatz zu diesen unauffälligen Ergebnissen zeigten erwachsene Lrrk2-defiziente Nie-ren eine ausgeprägte Anhäufung vakuolenartiger Partikel in den proximalen Tubuli. Dieser Befund könnte auf Störungen im endolysosomalen Weg hinweisen und ist konsistent zu den bei LRRK2-defizienten Nagetieren beschriebenen Phänotypen, sowie den durch pharmakolo-gische LRRK2-Inhibitoren hervorgerufenen Nebenwirkungen. Diese Ergebnisse sind ein viel-versprechender Ansatzpunkt für künftige Experimente. Im Rahmen dieser Arbeit wurde eine CRISPR/Cas9-target-site mit hoher Schnitteffizienz in-nerhalb der LRRK2-Kinasedomäne von Zebrafisch-Embryonen etabliert. In Kombination mit Fortschritten in der CRISPR-Methodik bilden diese Ergebnisse eine Grundlage zur Erzeugung einer lrrk2-G2019S Knock-in-Linie. Zusammenfassend zeigt sich in dieser Arbeit, dass Lrrk2-defiziente Zebrafische in Hinblick auf verschiedene physiologische Funktionen nicht beeinträchtigt zu sein scheinen. Obwohl dies im Einklang mit früher berichteten Ergebnissen steht, bleibt eine zufriedenstellende Erklärung für die Lrrk2-vermittelte Pathogenese weiterhin aus. Morphologische Veränderungen in Lrrk2-defizienten Nieren deuten auf Störungen in der Homöostase des Lysosoms hin und bieten ein vielversprechendes Forschungsziel. Eine präzisere Modellierung des menschlichen LRRK2-Genotyps in fortschrittlichen Tiermodellen könnte zukünftig mehr Einblick in das Rätsel von LRRK2 und seiner Rolle in der Neurodegeneration bieten.
29

Loss of lrrk2 impairs dopamine catabolism, cell proliferation, and neuronal regeneration in the zebrafish brain

Suzzi, Stefano 15 September 2017 (has links)
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a major cause of Parkinson’s disease (PD), which is why modelling PD by replicating effects in animal models attracts great interest. However, the exact mechanisms of pathogenesis are still unclear. While a gain-of-function hypothesis generally receives consensus, there is evidence supporting an alternative loss-of-function explanation. Yet, neither overexpression of the human wild-type LRRK2 protein or its pathogenic variants, nor Lrrk2 knockout recapitulates key aspects of human PD in rodent models. Furthermore, there is conflicting evidence from morpholino knockdown studies in zebrafish regarding the extent of zygotic developmental abnormalities. Because reliable null mutants may be useful to infer gene function, and because the zebrafish is a more tractable laboratory vertebrate system than rodents to study disease mechanisms in vivo, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genomic editing was used to delete the ~60-kbp-long zebrafish lrrk2 locus containing the entire open reading frame. Constitutive removal of both the maternal and the zygotic lrrk2 function (mzLrrk2 individuals) causes a pleomorphic phenotype in the larval brain at 5 days post-fertilisation (dpf), including increased cell death, delayed myelination, and reduced and morphologically abnormal microglia/leukocytes. However, the phenotype is transient, spontaneously attenuating or resolving by 10 dpf, and the mutants are viable and fertile as adults. These observations are mirrored by whole-larva transcriptome data, revealing a more than eighteen-fold drop in the number of differentially expressed genes in mzLrrk2 larvae from 5 to 10 dpf. Additionally, analysis of spontaneous swimming activity shows hypokinesia as a predictor of Lrrk2 protein deficiency in larvae, but not in adult fish. Because the catecholaminergic (CA) neurons are the main clinically relevant target of PD in humans, the CA system of larvae and adult fish was analysed on both cellular and metabolic level. Despite an initial developmental delay at 5 dpf, the CA system is structurally intact at 10 dpf and later on in adult fish aged 6 and 11 months. However, monoamine oxidase (Mao)-dependent degradation of biogenic amines, including dopamine, is increased in older fish, possibly suggesting impaired synaptic transmission or a leading cause of cell damage in the long term. Furthermore, decreased mitosis rate in the larval brain was found, in the anterior portion only at 5 dpf, strongly and throughout the whole organ at 10 dpf. Conceivably, lrrk2 may have a more general role in the control of cell proliferation during early development and a more specialised one in the adult stage, possibly conditional, for example upon brain damage. Because the zebrafish can regenerate lost neurons, it represents a unique opportunity to elucidate the endogenous processes that may counteract neurodegeneration in a predisposing genetic background. To this aim, the regenerative potential of the adult telencephalon upon stab injury was tested in mzLrrk2 fish. Indeed, neuronal proliferation was reduced, suggesting that a complete understanding of Lrrk2 biology may not be fully appreciated without recreating challenging scenarios. To summarise, the present results demonstrate that loss of lrrk2 has an early effect on zebrafish brain development that is later often compensated. Nonetheless, perturbed aminergic catabolism, and specifically increased Mao-dependent aminergic degradation, is reported for the first time in a LRRK2 knockout model. Furthermore, a link between Lrrk2 and the control of basal cell proliferation in the brain, which may become critical under challenging circumstances such as brain injury, is proposed. Future directions should aim at exploring which brain cell types are specifically affected by the mzLrrk2 hypoproliferative phenotype and the resulting consequences on a circuitry level, particularly in very old fish (i.e., over 2 years of age).
30

Developing assays to characterize the effects of LRRK2 G2019S on axonal lysosomes

Bhatia, Priyanka 20 February 2024 (has links)
A striking feature of Parkinson's disease (PD) is that the distal axonal terminals of neurons degenerate prior to the soma, a process referred to as 'dying-back'. Another hallmark of the disease is the pathological accumulation of abnormal protein aggregates in soma and axons. Lysosomes, a critical component of the protein quality control machinery, have thus been thought to be altered in PD. LRRK2 G2019S, a gain-of-kinase-function mutation, is one of PD's most common known causative mutations, and LRRK2-specific small molecule inhibitors have been developed as possible therapeutics. However, LRRK2 G2019S is incompletely penetrant, and its role in axonal degeneration is unclear. LRRK2 phosphorylates a subset of Rab GTPases, including Rab10. Since Rab GTPases are mediators of organelle trafficking, we speculated that LRRK2 G2019S affects the transport of organelles, such as lysosomes, thereby contributing to early PD pathogenesis. Using neural progenitor cell-derived neurons from two LRRK2 G2019S-PD patients; we developed a model of axonal trafficking of lysosomes to characterize the impact of mutant LRRK2 on lysosomal trafficking. In comparison to their isogenic gene-corrected controls, we observed a subtle reduction in mutant axonal lysosomal speed, which could indicate that mutant LRRK2 mildly disrupts retrograde lysosomal transport. We also observed that this trafficking phenotype was only partially rescued by LRRK2 kinase inhibitors, which could indicate the importance of other factors regulating axonal transport. Consistent with this idea, we found that mutant LRRK2 was associated with increased co-localization of phosphorylated Rab10 on a small subset of distal axonal lysosomes. Furthermore, the over-expression of Rab10 only mildly affected lysosomal trafficking in axons. Interestingly, damaging the lysosomal membrane increased LRRK2-dependent Rab10 phosphorylation, leading us to speculate that membrane damage in the axon might induce LRRK2 activity. Since lysosomes have been shown to mediate plasma membrane repair, we speculated that membrane damage might exacerbate LRRK2-dependent phenotypes in distal axons. Axotomy was used to test this idea, and we observed an inconsistent delay in the regrowth of mutant axons after axotomy. Moreover, we identified an association between mutant LRRK2 and the transient increase in lysosomes at the injury site, indicating that LRRK2 G2019S might potentially affect damage-prone distal axons. Since the LRRK2 G2019S-associated phenotypes observed in our assays were relatively mild in one isogenic pair, we were curious about the clinical and genetic phenotypes of the patients from whom the somatic cells for neural progenitor cell generation were sourced. Interestingly, we observed that clinical features of PD, including age-of-onset, motor symptoms, cognitive impairment, and the level of cerebrospinal fluid biomarkers, were heterogeneous between the two patients. Additionally, genetic analysis of specific PD risk-associated loci in MAPT and SNCA revealed that one patient was more at risk of developing PD than the other, indicating influence from genetic factors in addition to LRRK2 G2019S. These factors might affect the axonal phenotypes observed in our assays. Overall, we have developed assays to investigate the effects of LRRK2 G2019S on axonal lysosomes. These assays can potentially be a useful tool to better understand early pathogenesis in heterogeneous PD patients and test targeted therapeutics that can be successful over an eclectic cohort of PD patients, all of whom are diagnosed based on deteriorating motor symptoms.:TABLE OF CONTENTS I LIST OF FIGURES IV LIST OF TABLES VI ABBREVIATIONS VII 1 INTRODUCTION 1 1.1 Neurodegenerative diseases 1 1.2 Parkinson’s disease 2 1.2.1 General Features 2 1.2.2 Phenomenon of “dying back” in PD 6 1.2.3 Contribution of axonal architecture and function to “dying back” 7 1.2.4 Etiology of PD 10 1.2.4.1 Environmental factors 10 1.2.4.2 Genetic factors linked to axonal function 11 1.3 Lysosomes 12 1.3.1 Composition and biogenesis of lysosomes 13 1.3.2 Lysosomes as digestive centers 15 1.3.3 Lysosomes as secretory organelles 18 1.3.4 Lysosomes in PD 20 1.3.4.1 Genetic PD factors linked to lysosomal function 21 1.4 Leucine-rich repeat kinase 2 (LRRK2) 22 1.4.1 LRRK2 domain organization and function 22 1.4.2 Clinical features of PD patients with LRRK2 mutations (LRRK2-PD) 24 1.4.3 LRRK2 animal models 24 1.4.4 LRRK2 induced pluripotent stem cell (iPSC)-based models 25 1.4.5 Animal and iPSC-based models demonstrate a role for LRRK2 in the endo-lysosomal system 27 1.4.6 LRRK2 kinase inhibitors 30 2 AIMS OF THE THESIS 32 3 MATERIALS AND METHODS 33 3.1 Materials 33 3.1.1 Chemicals 33 3.1.2 Purchased kits 34 3.1.3 Plasmids 34 3.1.4 Antibodies 35 3.1.5 Dyes 36 3.1.6 Primers and oligonucleotides 36 3.1.7 Cell culture media and reagents 37 3.1.8 Small molecules 38 3.1.9 Compounds 38 3.1.10 Cell culture media 39 3.1.11 Human Neural Progenitor Cell (NPC) lines 40 3.2 Methods 41 3.2.1 Ethics statement 41 3.2.2 Licenses 41 3.2.3 Information about iPSC and NPC line generation 41 3.2.4 Preparation of cell culture coated plates 41 3.2.5 Maintenance of NPCs 42 3.2.6 Differentiation of NPCs to neurons 42 3.2.7 Preparation of microfluidic chambers 43 3.2.8 Seeding neurons as single cells 44 3.2.9 HEK293T cell culture 45 3.2.10 Treatment of neurons with compounds 45 3.2.11 Genomic DNA isolation 46 3.2.12 Polymerase-Chain Reaction (PCR) 46 3.2.13 Agarose gel electrophoresis 46 3.2.14 Plasmid DNA isolation 46 3.2.15 Lentiviral vector production 47 3.2.16 Lentiviral infection of human neurons 48 3.2.17 Protein isolation and quantification 48 3.2.18 Capillary electrophoresis 49 3.2.19 Axotomy 49 3.2.20 Immunostaining 50 3.2.21 Live cell imaging 51 3.2.22 Quantification of axonal trafficking using kymographs 52 3.2.23 Quantification of axonal trafficking using an object based method 53 3.2.24 Apotome imaging and quantification 54 3.2.25 Confocal imaging and quantification 54 3.2.26 Clinical and biomarker data collection 55 4 RESULTS 57 4.1 Establishing an axonal lysosomal trafficking assay 57 4.1.1 NPCs from LRRK2 G2019S patients and their respective isogenic controls differentiate into neurons 57 4.1.2 Axons can be spatially separated from soma and dendrites 60 4.1.3 Setting up the axonal trafficking assay 62 4.2 Axonal lysosomal trafficking assay detects LRRK2 G2019S associated changes in lysosome movement 65 4.3 Axonal lysosomal trafficking assay detects partial rescue by a small molecule LRRK2 inhibitor 71 4.4 LRRK2 G2019S is associated with an increase in the proportion of lysosomes co-localizing with phosphorylated Rab10 76 4.5 Rab10 over-expression mildly affects lysosomal trafficking in axons 78 4.6 Lysosomal membrane damage increases LRRK2-mediated Rab10 phosphorylation 81 4.7 LRRK2 G2019S is not associated with consistent effects on long-term axonal regrowth after axotomy 82 4.8 LRRK2 G2019S is associated with transient accumulation of lysosomes at the injury site after axotomy 86 4.9 Assessment of clinical, biomarker and genetic data from the LRRK2 G2019S patient donors 88 5 DISCUSSION 92 6 APPENDIX 101 7 SUMMARY 104 8 ZUSSAMENFASSUNG 106 9 BIBLIOGRAPHY 108 10 ACKNOWLEDGEMENTS 136 11 DECLARATIONS 138

Page generated in 0.0404 seconds