• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 373
  • 65
  • 60
  • 51
  • 26
  • 17
  • 11
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 762
  • 295
  • 269
  • 241
  • 187
  • 174
  • 173
  • 172
  • 171
  • 170
  • 170
  • 170
  • 170
  • 138
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Model of Thermal EHL Based on Navier-Stokes Equations : Effects of Asperities and Extreme Loads

Tošić, Marko January 2019 (has links)
A common approach in numerical studies of elastohydrodynamic lubrication (EHL) is based on solving the Reynolds equation that governs pressure distribution in thin lubricant films. The Reynolds equation is derived from the Navier-Stokes equations by taking assumptions that are considered valid when the thickness of the lubricant film is much smaller than its length. A massive increase in the computing power over the last decades has enabled the use of CFD (computational fluid dynamics) approach, based on the Navier-Stokes equations, in solving the EHL problem. Comparisons between the CFD and Reynolds approach have generally shown very good agreement. Differences can occur when the thin film assumptions of the Reynolds equation are not applicable. In this study, a CFD approach has been chosen with the aim of investigating effects of asperities and rheology at high loads on the behavior of the thin EHL films. A high quality mesh was generated in ANSYS ICEM CFD, while ANSYS Fluent has been employed in solving the Navier-Stokes equation by finite volume method (FVM). For EHL modeling, a set of user-defined functions (UDFs) were used for computing density, viscosity, wall temperature, heat source and elastic deformation of one of the contacting surfaces. Two lubricants were used, a commonly used oil in CFD analyses of EHL and Squalane. Non-Newtonian fluid behavior and thermal effects were considered. For Squalane, the two rheology models, Ree-Eyring and Carreau were compared. Squalane has been chosen in this study since it is one of the rare fluids with known parameters for both rheology models. Finally, the influence of surface roughness was explored for the cases of a single asperity and a completely rough wall. A surface roughness profile is generated in MATLAB by using the Pearson distribution function. In the cases where the surfaces are assumed to be completely smooth, the obtained results at the pressure of about 0.5 GPa closely correspond to literature, both in the case of Newtonian and non-Newtonian fluid behavior. At the pressure of about 1 GPa, severe shearing of the lubricant film has been noticed, characterized by a pronounced shear-band and plug flow. It was found that the choice of viscosity and rheology models has a large influence on the obtained results, especially at the high pressure levels. Finally, it was discovered that the developed CFD model of EHL has a great potential in studying the effects of surface roughness on the lubricant film behavior.
422

Experimental Analysis of Finish Turning of Inconel 617

Lai, Rachel January 2023 (has links)
Inconel 617 is a nickel-based superalloy whose properties include corrosion and oxidation resistance in high temperature environments. Due to their material properties, Inconel alloys are commonly used in aerospace applications where resistance to high pressure and temperature is required. These properties also cause the material to be hard to machine due to high temperatures in the cutting zone and its tendency to work harden. This paper focuses on improving the surface integrity and tool life for turning of Inconel 617 for use in next-generation nuclear applications. Various machining parameters are tested to improve the finish and tool life such as the feed rate, cutting speed, and depth of cut. While the machining of popular Inconel grades, such as Inconel 718, have been highly studied and understood, Inconel 617 lacks the knowledge base and research to define how the alloy behaves in machining and how it compares to other grades. Tests on tool coatings confirmed that commercially available coatings are durable enough to withstand the machining of this superalloy in finish turning and determined that AlTiN coatings provide the longest tool life. The investigations performed uncovered the relationship between cutting parameters and their influence on the surface integrity and tool life. MQL deposition was tested and found to be comparable and at times better than conventional flood coolant and may be considered a replacement for coolant after more improvement. This work details the knowledge and experimental procedure used to understand the machining of this superalloy. / Thesis / Master of Applied Science (MASc) / The purpose of this research is to develop an understanding of the machining of Inconel 617 for next-generation nuclear reactors. Canada’s plan to phase out coal-fired plants and deploy new nuclear reactors is contingent on being able to manufacture the necessary components. Inconel 617 is slated to be used in these high temperature, corrosive environments due to its high strength in elevated temperatures and its resistance to corrosion. However, since the material is a recent addition to the list of compatible materials, not much research has been performed on the manufacturing of this superalloy. Factors like cutting speed, coolant, and tooling were investigated and understood with the aim of improving the cost and time associated with manufacturing these nuclear grade components.
423

Optimizing surface texture for combustion engine cylinder liners

Spencer, Andrew January 2010 (has links)
The Piston Ring - Cylinder Liner (PRCL) contact is the single largest contributor to frictional losses in an internal combustion (IC) engine, causing 20-40% of all mechanical losses. If these mechanical losses can be reduced by 10% then vehicle fuel efficiency could be increased by approximately 1.5-2.5%. In todays automotive industry fuel efficiency is one of the most important factors in vehicle design due to increasing concerns about energy security, increasing fuel prices and climate change. The objective of this project is to optimise the cylinder surface texture, which when referring to cylinder liners in this work means the cross-hatch grooves left by the honing process.This work focuses on simulation techniques that can be used to help optimize cylinder liner surface texture to reduce friction while at the same time minimizing oil consumption and wear. Cylinder liner surface topography is investigated with a range of measurement techniques in order to reveal all the important features of the existing surface. Different ways of characterizing surface topography based on both traditional height averaging parametersand functional parameters calculated for a range of different surface measurements are discussed. The different characterization techniques are compared to find the most appropriate way of quantitatively describing surface topographies.A full engine cycle simulation of the PRCL contact has been developed. A homogenization technique was implemented for solving the Reynolds equation. This is a two scale approach where surface roughness is treated on the local scale and surface texture plus global geometry on the global scale. A method for generating artificial surface topography based on real surface measurement data was developed. This allows for the possibility of simulating a wide range of new surface topographies in order to investigate their potential for reducing friction and minimising oil consumption and wear.
424

Grease lubrication in radial lip seals

Baart, Pieter January 2009 (has links)
Rolling element bearings contain seals to keep lubricant inside and contamination outside the bearing system. These bearings are more often lubricated with grease rather than oil. Much knowledge is available on oil lubricated seals but a good understanding of grease lubricated seals is lacking.In this thesis, first the lubrication, pumping and sealing mechanisms of oil and grease lubricated radial lip seals have been discussed. The first paper reviews the public literature. This review has shown that very little is known on grease lubrication in radial lip seals. The primary lubrication, sealing and pumping mechanisms found for oil lubricated seals are micro-elastohydrodynamic lubrication between the seal and shaft roughness and tangential deformations of the seal surface for a pumping action. These mechanisms are important but it is felt that other effects have to be included for explaining differences seen in grease lubricated radial lip seals. One effect in grease lubrication is the normal stress effect which is described in the second paper. It is shown that the grease rheology and especially the normal stress effect play a significant role in film formation in grease lubricated seals. The model predicts that 50 to 60% of the load carrying capacity can be generated by the normal stress effect for a low contact pressure bearing seal depending on the operating conditions. The oil bleed model presented in the third paper describes the release of oil from the grease. This model is based on viscous flow through the porous soap microstructure and the driving force is the pressure gradient resulting from centripetal forces. It is shown that the soap fibre distribution has to become anisotropic during oil bleed and the model has been validated with experiments at different temperatures and rotating speeds. The model can be used with good confidence for longer periods of time and can be used as input for replenishment models.
425

Hot forming tribology : galling of tools and associated problems

Pelcastre, Leonardo January 2011 (has links)
In recent years, the use of ultra high-strength steels (UHSS) as structural reinforcements and in energy-absorbing systems in automobiles has increased rapidly; mainly in view of their favourable strength to weight ratios. However, due to their high strength, the formability of UHSS is poor, thus complex-shaped UHSS components are invariably produced through hot-metal forming processes. The use of hot stamping or press hardening, which was developed during the 1970’s in northern Sweden, has become increasingly popular for the production of ultra high strength steels. In hot stamping, different tribological problems arise when the tool and work-piece interact during the forming process at elevated temperatures. Wear and surface damage of forming tools can be detrimental to the quality of the final product and these can also have an adverse impact on the process economy due to frequent maintenance or replacement of tools. In this work, a literature review pertaining to tribology of hot sheet metal forming has been carried out. This review has revealed that the awareness of tribology and its application in metal forming processes at high temperature has increased in the recent years. A considerable amount of work has been done to enhance the understanding of the response of different materials and parameters involved and also to improve the process itself. However, despite these developments, there exist major gaps in knowledge pertaining to the occurrence of friction and wear in hot sheet metal forming. Extensive experimental studies have thus been undertaken to bridge some of the knowledge gaps related to tool wear and failure mechanisms in the hot stamping process. These studies have involved both the systematic analysis of actual worn tools as well as parametric tribological investigations in the laboratory. The analysis of worn tools showed that friction is a crucial parameter in their operating life. It was observed that severe mechanical stresses are generated due to high friction during the work-piece/tool interaction. As a result of the cyclic thermal and mechanical loads imposed during the hot forming process, the stresses generated eventually lead to the occurrence of fatigue damage at the tool surface. Another important mechanism observed was material transfer from the work-piece to the tool surface. This is particularly common and detrimental in hot forming of coated work-piece material. The most common coating applied to the ultra high strength steel is a hot dip aluminium based coating, commonly referred to as Al-Si coating. The parametric studies carried out were aimed at understanding of the initiation mechanisms of material transfer from the Al-Si coated steel to the tool material. The results showed that severe galling occurs by accumulation and compaction of wear debris and becomes enhanced in tools having rough surfaces. The roughness defects on the surface promote accumulation of wear particles. Furthermore, high contact pressure also enhances the compaction of wear debris and consequently the severity of material transfer. It was observed that the severity of galling can be reduced by the use of smooth and hard surfaces. Additionally, the use of different PVD coatings on the tool steels showed an increased tendency on adhesion, causing a severe material transfer onto the tool surface.
426

Parameters affecting the functionality of additives in lubricated contacts : effect of base oil polarity

Suarez, Aldara Naveira January 2010 (has links)
Traditionally rolling contact fatigue observed in bearing field applications was subsurface initiated. However, despite the improvement of steel properties, some factors such as downsizing in bearing design, extreme loading of the bearings as well as demanding application conditions (start up-stop cycles) have led to an increase on the cases of surface damage related to surface initiated fatigue, that comes basically from surface distress. Possible causes leading to surface initiated fatigue are: material and surface properties, marginal lubrication and lubricant chemical composition. Lubricants are formulated products composed of base oil, and an additive package designed for a specific application. Extreme-pressure (EP) and antiwear (AW) additives are chemically active additives, they react with the steel surfaces in contact to form a protective additivederived layer, thus reducing friction and controlling wear. However, certain EP/AW additives that increase the performance of other machine elements, such as gears, can be detrimental for the bearings running in the same lubrication environment. In order to identify the plausible mechanisms that govern the detrimental effect of EP/AW additives on bearing performance, it is necessary to study closely the interactions occurring in the system form by the base oil, the additives present and the steel surface, as well as the influence of operating conditions. The focus of the present work is to identify the parameters affecting the additive-derived layer formation, as it is directly related to the additive reactivity towards the surface, and the tribological properties of the layer, that will determine the tribological performance. Zinc dialkyldithiophosphate (ZDDP), and two low viscosity model oils with different polarity were selected. The influence of base oil polarity on the additive performance was studied in the nanoscale using Atomic Force Microscopy and the tribological performance was evaluated using a ball-on-disc test rig under mixed rolling-sliding conditions in the boundary lubrication regime. An in-situ interferometry technique was used to monitor the additive derived reaction layer formation, and the chemical composition, morphology and nanomechanical properties were studies using X-ray Photoelectron Spectroscopy, Atomic Force Microscopy and Nanoindentation respectively. It was found that base oil polarity determines the transport of additives to the surface thereby controlling the maximum reaction layer thickness, friction and wear, as well as the morphology and nanomechanical properties of the additive-derived reaction layer. However the reaction layer chemical composition is not determined by the base oil polarity. Among the operating conditions, shear was identified as a fundamental parameter on the activation of additives on rubbing steel surfaces and the properties of the derived reaction layer.
427

Carbon nanofiller reinforced UHMWPE for orthopaedic applications : optimization of manufacturing parameters

Enqvist, Evelina January 2013 (has links)
Polymer composites research designed for orthopaedic applications are commonly focused on Ultra high molecular weight polyethylene (UHMWPE) reinforced by a variety of different nanoparticles. However, the high melt viscosity of UHMWPE renders conventional melt mixing techniques impossible for composite manufacturing. Either solvents that are often difficult to extract from the finished composite or addition of high density polyethylene is necessary in order to use conventional melt mixing techniques. Therefore, solid state mixing is convenient option for manufacturing of UHMWPE based nanocomposites.The aim of this work is to optimize manufacturing parameters (rotational speed and mixing time) for CNT and ND reinforced UHMWPE prepared by planetary ball milling. Many reports have previously been presented, where UHMWPE has been reinforced by CNTs through ball milling, but typically, only mixing time is presented as the crucial variable in ball milling and the movement of the vials, size of the balls, ball-to-powder mass ratio, mixing media and even rotational speed are often overlooked.During this work, both multi walled carbon nanotubes (MWCNTs) and nanodiamonds (NDs) as reinforcement in UHMWPE have been studied. Beginning with the optimal speed in a planetary ball mill for CNT reinforcement and continuing to time and mixing media for NDs. Scanning electron microscopy (SEM) has been used to study the dispersion of nanoparticles using an extreme high resolution SEM (XHR-SEM). Differential scanning calorimetry (DSC) was used to study the thermal properties of the nanocomposite and X-ray diffraction (XRD) was used to complement the crystallinity measurements obtained by DSC. The water contact angles were measured using the sessile drop method. The results showed changes in morphology on UHMWPE powder due to ball milling, such as flattening, welding of powder and changes in powder particle size. The ball milling procedure also negatively affected the crystallinity of the powder, however the crystallinity of the sintered material did not show this negative trend for all composites. Furthermore, thermal analysis did not show any changes in melting temperatures, which indicates that any thermal effects on the powder due to ball milling is only temporary. SEM analysis also showed that a higher speed and longer mixing times more effectively distribute and break down nanoparticle clusters, but at the expense of flattening of the powder and reduced powder crystallinity. It was also shown that wet mixing with ethanol was more efficient and less detrimental to powder morphology compared to dry mixing. Water contact angles were overall increased for composites compared to UHMWPE.
428

Modelling and numerical analysis of leakage through metal-to-metal seals

Ràfols, Francesc Pérez January 2016 (has links)
Metal-to-metal seals are critical components as their failure can lead to leakage of hazardous fluids to the environment or to fatal failure of the systems they operate on. Most systems are subjected to increasingly more demanding conditions and deeper knowledge about how different parameters affect the leakage is necessary to design seals with the desired performance. Fundamental knowledge can be obtained by means of numerical simulations, since it can provide in-situ information which would be extremely difficult, if not impossible, to obtain by means of physical experiments only. Moreover, in the virtual experiments it is possible isolate the effect of variations in a single parameter. However, no model that can serve as a predictive tool and thus has been tested against experimental results has been found in literature. The reason for this is the complexity in accounting for both the multi-scale nature of surface roughness and its intrinsic randomness. This lack have defined the main objective of this work, i.e., to develop a model for the leakage through metal-to-metal seals, which can output quantitative results that can be used for comparison against experimental work. This has been accomplished by including the stochastic nature of the surface topography explicitly in a two-scale method. The model constructed following this approach fulfills the requirement of giving a quantitative prediction of metal-to-metal seals. Moreover, it also provides new insight on the expected variability in leakage introduced by the stochastic nature of the roughness.A secondary objective has been to investigate the seal behaviour during unloading, i.e., when the applied load is gradually released after having caused significant plastic deformation. The reason for assessing this topic is that metal-to-metal seals subjected to a certain load cycle exhibit, at any given load, a significantly larger leakage during the first loading than it does during the subsequent unloading for the same load. The numerical simulations of the seal behavior during unloading also confirmed the smaller leakage during unloading. Moreover, it was observed that a substantial load release was required before a significant leakage increase could be detected and that the leakage remained nearly constant up to that point. This is an important finding that can be used when designing seals in order to account for stress relaxation during service live.
429

High Temperature Friction and Wear in Press Hardening

Mozgovoy, Sergej January 2014 (has links)
In the automotive industry, press hardening is usually employed to produce safety orstructural components from advanced high–strength steels. This hot forming process, andthermomechanical forming processes in general, is highly dependent on friction betweentool and workpiece as friction affects and controls the deformation of the workpiece.However, friction is also directly associated with wear of the forming tools. Tool wear isa complex system response depending on contact conditions and is a serious issue whenit comes to process economy as it reduces the service life of the tool. Therefore, it isnecessary to enhance the durability of thermomechanical forming tools by studying theinfluence of parameters such as contact pressure, cyclic thermal loading, repetitive mech-anical loading and others on tool wear. Then, computational mechanics can be utilised tonumerically simulate and optimise the thermomechanical forming process by predictingwear of the tools.Dry sliding tests were carried out on a high temperature reciprocating friction andwear tester. The aim was to identify the occurring wear mechanisms and determine thetribological behaviour of prehardened hot work tool steel when sliding against 22MnB5boron steel. A normal load of 31 N, which corresponds to a contact pressure of 10 MPa, asliding speed of 0.2 ms −1 and temperatures ranging from 40◦Cto800◦ C were employed.It was found that the coefficient of friction and the specific wear rate decreased at elevatedtemperature because of the formation of compacted wear debris layers on the interactingsurfaces.Increasing material and energy expenses, rising demands for process flexibility andstability as well as requirements for minimal trial and error have led to a growing interestin numerical simulation of wear phenomena. Finite element simulations of a strip drawingtest were conducted to explore the possibility of predicting tool wear in press hardening.The focus laid on unveiling the contact conditions on the forming tools through numericalsimulation. The influence of high temperature on wear was studied and the results wereimplemented in Archard’s wear model to introduce temperature dependence. Further-more, another wear model used for warm forging was also considered. It was found thatthe extreme contact conditions occurred at tool radii and that the different wear modelsled to similar wear depth profiles on the radii but with different orders of magnitude.Standard high temperature tribometers allow fundamental tribological studies to becarried out in order to investigate the tribological behaviour of the materials in contact.However, the conditions prevalent during the interaction of the hot workpiece and toolsurfaces in thermomechanical forming are not adequately simulated in these tribometers.A novel high temperature tribometer has been employed in order to more closely simulatethe interaction between tool and workpiece at elevated temperatures during thermomech-anical forming. It was found that a higher load led to a lower and more stable coefficient
430

High Temperature Wear Processes

Hernandez, Sinuhe January 2014 (has links)
Moving machine assemblies are increasingly exposed to extreme operating conditions involving high temperatures owing to demands on higher power densities, high performance/efficiency and extreme environments. The changes in surface and near surface properties of contacting surfaces caused by exposure to high temperature and deformation govern the occurrence of friction, wear and material transfer of the tribological system. However, these changes have not been thoroughly investigated. In order to enable development of new products and processes, there is a need for new knowledge pertaining to tribological phenomena occurring at elevated temperatures.One of the most commonly used engineering materials is steel as it offers a good compromise between performance and cost even at high temperatures. For example, prehardened (quenched and tempered) tool steels are commonly used in hot forming dies can also be employed in other technological applications involving elevated temperatures. Although the research pertaining to hot stamping, and high temperature tribology in general, has significantly grown during the last years there are still knowledge gaps that need to be bridged. Adhesion and abrasion have been identified as the most dominant wear mechanisms in high temperature tribological systems but the detailed understanding of the mechanisms is still inadequate.The objective of this work is therefore to obtain a deeper understanding of the tribological phenomena associated with adhesion and abrasion that takes place at high temperatures. Unidirectional sliding wear tests have been conducted in order to investigate the influence of contact pressure and temperature on the wear and friction characteristics of tool steel and boron steel pair. Tribological studies involving boron steel, tool steels and heat-treated high-Si steels in a three body abrasive environment were also carried out with a view to explore the effect of temperature on the wear rate, wear mechanisms and to correlate this with material properties like hot hardness and toughness.The results from the unidirectional sliding tests showed that the frictional behaviour of tool steel and boron steel is load and temperature dependent. In general the friction coefficient decreases as both temperature and load are increased as a result of the formation of oxide layers. At temperatures above 200 °C, the compaction and sintering of these layers led to the formation of a wear protective glaze layer. Consequently, the wear rate for both materials decreased at elevated temperatures. Additionally, a friction and wear mechanisms map was developed for the investigated materials.In the case of abrasive wear tests, the results showed that the main wear mechanism presented for each material varied with temperature. In general, a transition from micro-ploughing to a combination of micro-cutting and micro-ploughing was present. The tool steels and boron steel showed a decrease in wear rate in the range of 100 to 400 °C compared to that at room temperature. This was attributed to the toughness in case of the tool steel and the formation of a protective tribolayers for the boron steel. Above 400 °C the wear rate increased for these three materials mainly due to the recovery and recrystallization processes. The wear rate of the high-Si steels increased with testing temperature. At 500 °C, these steels had the same hardness and the differences in wear were attributed to the changes in the material toughness.

Page generated in 0.1535 seconds