• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 21
  • 18
  • 8
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 201
  • 47
  • 31
  • 23
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Influências do meio ambiente no parto / Environment influences on childbirth

Angela Megumi Ochiai 17 December 2008 (has links)
Introdução: As influências lunares e ambientais no início do trabalho de parto ainda são pouco estudadas. Foi avaliada a influência extrínseca em eventos obstétricos. Métodos: em um hospital secundário, situado na cidade de São Paulo, Brasil, foram selecionados 1.826 dias em que ocorreram 17.417 partos. As internações por o trabalho de parto foram associadas à temperatura ambiental, pressão atmosférica, variação das marés e das fases lunares na incidência do excesso deste evento, pelo percentil 75. O índice Z (desvio padrão/ pela média) de cada variável foi calculado e a diferença diária indicou o aumento ou a diminuição. Foi utilizada a análise de regressão logística para a predição do excesso da admissão e p<0,05 foi considerado significativo. Resultados: Os preditores do excesso da internação por trabalho de parto foram: o aumento da temperatura (risco relativo: 1,742, p=0,045) e diminuição da pressão atmosférica (risco relativo: 1,269, p=0,029). O aumento da amplitude das marés foi associado com a probabilidade menor do excesso da internação (risco relativo: 0,762, p=0,030). A fase lunar não era preditora do excesso da admissão (p=0,339). Conclusão: Pela análise multivariada, o aumento da temperatura e a diminuição da pressão atmosférica predisseram a ocorrência do excesso da admissão por trabalho de parto e o aumento da amplitude das marés, como uma medida da força gravitacional lunar, foi preditora de uma menor probabilidade do excesso do trabalho de parto / Background: lunar and environmental influences in vaginal delivery remain unclear. We assessed extrinsic influence in obstetric events. Methods: in a secondary line hospital, located in São Paulo city, Brazil, we selected 1,826 days, in which occurred 17,417 admissions for obstetric labor, and we studied influence of air temperature, atmospheric pressure, tides range, and lunar phases in incidence of excess of obstetric labor, defined as more than 9 admissions per day. Z score (standard deviation from mean) of each variable was calculated, and diary difference to indicate increase or decrease was assessed by logistic regression for prediction of admission excess. Two-side P< 0.05 was considered significant. Results: predictors of admission excess were increase of temperature (relative risk: 1.742, P=0.045), and decrease of atmospheric pressure (relative risk: 1.269, p=0.029). Increase of tides range was associated with lower probability of admission excess (relative risk: 0.762, P=0.030). Lunar phases was not predictor of admission excess (P=0,339). Conclusion: By multivariate analysis, increase of temperature and decrease of atmospheric pressure predicted occurrence of excess of obstetric labor admission, and increase of tidal range, as lunar gravitational force measurement, predicted lower probability of admission excess
82

Development of the LunaH-Map miniature neutron spectrometer

Vogel, Samuel, Frank, Rebecca, Stoddard, Graham, Christian, James F., Johnson, Erik B., Hardgrove, Craig, Starr, Richard, West, Stephen 24 August 2017 (has links)
There is strong evidence that water-ice is relatively abundant within permanently shadowed lunar surface materials, particularly at the poles. Evidence for water-ice has been observed within the impact plume of the LCROSS mission and is supported by data gathered from the Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer (LPNS). Albedo neutrons from the Moon are used for detection of hydrogen, where the epi-thermal neutron flux decreases as hydrogen content increases. The origin on the concentration of water within permanently shadowed regions is not completely understood, and the Lunar Polar Hydrogen Mapper (LunaH-Map) mission is designed to provide a high-resolution spatial distribution of the hydrogen content over the southern pole using a highly elliptical, low perilune orbit. The LunaH-Map spacecraft is a 6U cubesat consisting of the Miniature Neutron Spectrometer (Mini-NS). Mini-NS is not collimated, requiring a low altitude to achieve a higher spatial resolution compared to previous missions. To develop a compact neutron detector for epi-thermal neutrons, the Mini-NS comprises of 2-cm thick slabs of CLYC (Cs2LiYCl6), which provide a sensitivity similar to a 10-atm, 5.7-cm diameter He-3 tubes, as used in LPNS. The Mini-NS digital processing electronics can discriminate by shape and height to determine signal (albedo neutrons) from background (cosmic rays). The Mini-NS achieves a total active sensing area of 200 cm(2) and is covered with a cadmium sheet to shield against thermal neutrons. The research and development on the detector modules show a robust design ready for space flight.
83

Understanding Space Weathering of Asteroids and the Lunar Surface: Analysis of Experimental Analogs and Samples from the Hayabusa and Apollo Missions

Thompson, Michelle, Thompson, Michelle January 2016 (has links)
Grains on the surfaces of airless bodies are continually being modified due to their exposure to interplanetary space, a phenomenon known as space weathering. This dissertation uses a multi-faceted approach to understanding space weathering of the lunar and asteroidal surfaces. Chapters 1 and 2 provide an introduction to space weathering and a discussion of the methods employed in this work, respectively. Chapter 3 focuses on the analysis of returned samples from near-Earth asteroid Itokawa using the transmission electron microscope (TEM) and contributes to the first-ever comparison of microstructural and chemical features of space weathering in returned samples from two different airless bodies. This research uses high-resolution imaging and quantitative energy-dispersive x-ray spectroscopy (EDS) measurements to analyze space weathering characteristics in an Itokawa soil grain. These analyses confirm that space weathering is operating on the surface of Itokawa, and that many of the resulting features have similarities to those observed in lunar soils. Results show that while there is evidence that both major constituent space weathering processes are operating on the surface of Itokawa, solar wind irradiation, not micrometeorite impacts, appears to be the dominant contributor to changes in the microstructure and chemistry of surface material. Chapter 4 presents a detailed study of nanophase Fe (npFe) particles in lunar soil samples. For the first-time, the oxidation state of individual npFe particles was directly measured using electron energy-loss spectroscopy (EELS) in the TEM. The results show that npFe particles are oxidizing over their time on the lunar surface, and that the amount of oxidized Fe in the nanoparticles is correlated with soil maturity. The EELS data are also coupled to atomic-resolution imaging, which is used to determine the structure of the nanoparticles, confirming their mineral phase. This work challenges the long-standing paradigm that all npFe particles are composed of metallic Fe and that the chemical composition of these features remains static after their formation. A theoretical modeling investigation of the influence that npFe particles of different oxidation states have on the spectral properties of the material is also presented. The model results show that varied Fe-oxidation states of the nanoparticles can produce subtle changes in the optical properties of the soils, including the degree of reddening and the attenuation of characteristic absorption bands. These findings should be accounted for in future modeling of reflectance spectra. Chapter 5 presents a novel technique for simulating space weathering processes inside the TEM. Using an in situ heating holder, lunar soils were subjected to both slow- (~minutes) and rapid-heating (<seconds) events to simulate micrometeorite impacts. The slow-heating experiments show that npFe forms at ~575 ºC, providing a temperature constraint on initial npFe formation. Lunar soil grains that were subjected to a single, rapid, thermal pulse show the development of npFe particles and vesiculated textures near the grain rim. The vesicles were imaged and the npFe particles were imaged and then mapped with EDS. The oxidation state of the npFe particles was confirmed to be Fe^0 using EELS. Several lunar soil grains were subjected to multiple thermal shocks to simulate longer exposure times on the lunar surface. With each heating cycle, the number and size distribution of the npFe particles changed. The average size of npFe particles increased, and the size distribution became more gaussian after multiple heating events, versus the asymmetric distribution present after only one heating event. These results provide insight into the particle growth dynamics for space weathered soils and could offer a new way to place relative age constraints on grains in lunar soil.Chapter 6 provides a summary of the work presented here, discusses its implications for understanding space weathering processes across the solar system, and presents a perspective on the future of space weathering studies.
84

Helically-Driven Dynamics in Granular Media

January 2019 (has links)
abstract: Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations. This dissertation discusses research aimed at understanding the role and function of empirical, computational, and theoretical granular physics approaches as they apply to helical geometries, their envelope of applicability, and the development of new laws. First, a static Archimedes screw submerged in granular material (glass beads) is analyzed using two methods: Granular Resistive Force Theory (RFT), an empirically derived set of equations based on fluid dynamic superposition principles, and Discrete element method (DEM) simulations, a particle modeling software. Dynamic experiments further confirm the computational method with multi-body dynamics (MBD)-DEM co-simulations. Granular Scaling Laws (GSL), a set of physics relationships based on non-dimensional analysis, are utilized for the gravity-modified environments. A testing chamber to contain a lunar analogue, BP-1, is developed and built. An investigation of straight and helical grousered wheels in both silica sand and BP-1 is performed to examine general GSL applicability for lunar purposes. Mechanical power draw and velocity prediction by GSL show non-trivial but predictable deviation. BP-1 properties are characterized and applied to an MBD-DEM environment for the first time. MBD-DEM simulation results between Earth gravity and lunar gravity show good agreement with theoretical predictions for both power and velocity. The experimental deviation is further investigated and found to have a mass-dependant component driven by granular sinkage and engagement. Finally, a robust set of helical granular scaling laws (HGSL) are derived. The granular dynamics scaling of three-dimensional screw-driven mobility is reduced to a similar theory as wheeled scaling laws, provided the screw is radially continuous. The new laws are validated in BP-1 with results showing very close agreement to predictions. A gravity-variant version of these laws is validated with MBD-DEM simulations. The results of the dissertation suggest GSL, HGSL, and MBD-DEM give reasonable approximations for use in lunar environments to predict rover mobility given adequate granular engagement. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
85

Thermal Analysis and Design of the Photovoltaic Investigation on Lunar Surface (PILS) Payload

Thaikattil, Greeta Jose January 2020 (has links)
No description available.
86

Navigation algorithm for spacecraft lunar landing

Paturi, Sasikanth Venkata Sai 07 August 2010 (has links)
A detailed analysis and design of a navigation algorithm for a spacecraft to achieve precision lunar descent and landing is presented. The Inertial Navigation System (INS) was employed as the primary navigation system. To increase the accuracy and precision of the navigation system, the INS was integrated with aiding sensors - a star camera, an altimeter and a terrain camera. An unscented Kalman filter was developed to integrate the aiding sensor measurements with the INS measurements, and to estimate the current position, velocity and attitude of the spacecraft. The errors associated with the accelerometer and gyro measurements are also estimated as part of the navigation filter. An STK scenario was utilized to simulate the truth data for the navigation system. The navigation filter developed was tested and simulated, and from the results obtained, the position, velocity and attitude of the spacecraft were observed to be well estimated.
87

Understanding the Pressure-Sinkage Relationship for Simulated Lunar Regolith and Implications on Bearing Capacity and Trafficability

Millwater, Catherine A 01 January 2023 (has links) (PDF)
The intent of this thesis is to explore the pressure-sinkage relationship for simulated lunar regolith (simulant). The simulants used in this experiment emulate the lunar highlands (LHS-1) and the lunar mare (LMS-1). The ultimate ability of a terrain or regolith to support a load without shear failure is vital to the planning and construction of permanent infrastructure. This relationship can be measured by applying a normal load to the regolith until shear failure, from which allowable and ultimate bearing capacity can be deduced. An understanding of the pressure-sinkage of lighter loads on the higher ‘fluffy' layer of regolith is of great importance to low mass projects. The experimental hardware consisted of a test bed filled with simulated lunar regolith. The focus was to create a mechanism to apply a known load to a simulant surface normal to a square box filled with a regolith simulant. A known mass of each simulant was placed into the bearing capacity box and gently agitated to encourage natural settling and the density was measured. The simulant was only packed as much as was caused by gravity and settling. Normal loads of increasing weight were put into the box, putting pressure on the simulant. It was determined that widely accepted models for pressure-sinkage reasonably anticipate sinkage in both LHS-1 and LMS-1, though this study recommends improvements to the experimental design.
88

Analysis of Low-Energy Lunar Transfers in a High-Fidelity Dynamics Model

Torchia, Patrick Jason 03 July 2023 (has links)
Renewed interest in returning to the Moon, emboldened by recent directives and missions by NASA, has necessitated the establishment of lunar infrastructure to support continuous human presence. With that, the objective of making this return more cost effective has gained significant importance. Low energy lunar transfers are more efficient ways to reach the Moon than the traditional Hohmann-type transfer. These trajectories leverage the multi-body gravitational effects to reduce overall delta-v requirements, in some cases removing the capture delta-v completely. While the time of flight for these transfers can be much longer than a Hohmann-type transfer, the chaotic design space of these transfers can enable large changes in arrival conditions at the Moon for small changes in initial conditions. Many investigations of these transfers take place in simplified dynamical models, such as the Planar Circular Restricted Three Body Problem, with very few higher-fidelity models being implemented. This approach is good to understand the dynamics of these trajectories as well as provide initial guesses for higher-fidelity models; but approximating the dynamics heavily make these models less applicable to mission design. This thesis aims to investigate the application of a higher-order model to simulate these trajectories. STK Astrogator was used to recreate the NASA GRAIL trajectory; and from the recreated trajectory, a nominal trajectory absent of mid-course corrections was established. This nominal trajectory was used to perform parametric and variational studies of departure and arrival conditions as well as compare to a nominal trajectory in a reduced-fidelity model. An investigation into the post launch correction burn requirements following launch vehicle under-performance was completed. Utilizing low energy transfers proved beneficial to adjusting arrival conditions for low delta-v requirements. All arrival inclinations are reasonably achievable for around 255 m/s. Using 255 m/s as a baseline, right ascension of the ascending node could be reached in a 40 degree range and argument of periapsis in a 50 degree range. Lunar insertion arrival can be varied by 7 hours on either side for less than 80 m/s. Trans-lunar injection epoch can be varied by 7 hours on either side of nominal departure for less than 4 m/s. Orbit radius and initial velocity are the most expensive errors to correct. These trajectories can be tuned to reduce the overall mid-course correction delta-v requirement for differing arrival inclinations if other orbital elements are relaxed. A relationship between placement of post-launch correction maneuver for velocity or radius errors was found. Comparing the trajectory in STK to the Inclined Bi-Elliptic Restricted Four Body problem, revealed that timing of the trajectory is variable while keeping the same arrival and departure conditions. However, solar radiation pressure cannot be ignored for more accurate simulation of these trajectories. This investigation has shown that low energy lunar transfers are a viable method to reach the Moon and their chaotic nature can be leveraged to relax restrictions in the design space. / Master of Science / Returning to the Moon has become a more important goal within the space industry. This has required more cost-efficient ways to reach the Moon; an important cost savings being fuel. Traditional ways to reach the Moon required large amounts of fuel to be expended to remain around the Moon after launch. Low energy lunar transfers aim to reduce fuel usage while still reaching the Moon, although they take much longer to reach their destination. Fuel and energy have direct comparisons and are used to evaluate these transfers. These transfers are highly susceptible to changes in their trajectory making them ideal for transferring to the Moon in different orientations. These changes can be made using very little fuel, allowing for more resources to be brought to the Moon. Navigating these transfers to the Moon require an accurate model of space for mission design.
89

Automated Tools and Techniques for Mars Forward Exploration

Allender, Elyse J. January 2016 (has links)
No description available.
90

Characterization and distribution of lunar mare basalt types using remote sensing techniques

Pieters, Carlē Ellen January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Bibliography : leaves 315-344. / by Carlē Pieters. / Ph.D.

Page generated in 0.0417 seconds