• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EquaÃÃes algÃbricas: aspectos histÃricos e um estudo sobre mÃtodos algÃbricos, geomÃtricos e computacionais de soluÃÃo / Algebraic equations: historical aspects and a study of algebraic, geometric and computational methods of solutions

Guttenberg SergistÃtanes Santos Ferreira 24 January 2014 (has links)
Este estudo propÃe a discussÃo sobre EquaÃÃes AlgÃbricas, objetivando realizar um estudo sobre as demonstraÃÃes das fÃrmulas, abordando desde aspectos histÃricos atà os diversos mÃtodos de resoluÃÃo de problemas, neste caso, os mÃtodos trabalhados foram o AlgÃbrico, o GeomÃtrico e o Computacional. Esta pesquisa se baseou num estudo bibliogrÃfico sobre as dificuldades de realizar as demonstraÃÃes das fÃrmulas trabalhadas nos conteÃdos de matemÃtica, bem como nas demonstraÃÃes propriamente ditas, aliadas a diversos exemplos resolvidos. A anÃlise do material bibliogrÃfico permitiu distribuir este estudo atravÃs do MÃtodo AlgÃbrico de resoluÃÃo de problemas, em que se discutiu a demonstraÃÃo e aplicaÃÃo das fÃrmulas resolutivas das equaÃÃes polinomiais de 1Â, 2Â, 3 e 4 graus, e ainda citando a impossibilidade da existÃncia de fÃrmulas para equaÃÃes de grau n > 4. No estudo sobre o MÃtodo GeomÃtrico, percebeu-se como a geometria està eficientemente presente na resoluÃÃo de problemas e que as soluÃÃes sÃo possÃveis apenas atravÃs de rÃgua e compasso, neste tÃpico foram abordados mÃtodos para resoluÃÃo de equaÃÃes polinomiais de 1 e 2 graus. Sobre o MÃtodo Computacional, foi enfatizado o estudo sobre os mÃtodos iterativos de resoluÃÃo, que sÃo processos de aproximaÃÃes sucessivas, para o cÃlculo de zeros da funÃÃo, neste item foram discutidos os mÃtodos de Newton, bisseÃÃo, secante, cordas e ponto fixo, de modo que ao final do tÃpico foram comparados os mÃtodos sob os aspectos de garantia e agilidade de convergÃncia e esforÃo computacional. Os resultados conseguidos indicaram a importÃncia do tema de resoluÃÃo de problemas com Ãnfase nas demonstraÃÃes das fÃrmulas, e que a contextualizaÃÃo histÃrica pode contribuir para desmitificar o processo de criaÃÃo e humanizaÃÃo da matemÃtica. / This study proposes a discussion of Algebraic Equations, aiming to conduct a study on the statements of the formulas, addressing the historic aspects to the various methods of problem solving, in this case, the methods were worked Algebraic, Geometric and Computational. This research was based on a literature study of the difficulties of performing demonstrations of formulas worked in the contents of mathematics as well as in the statements themselves, together with many worked examples. The analysis of the bibliographic material allowed to distribute this study by the method Algebraic problem-solving, in which they discussed the demonstration and application of resolving formulas of polynomial equations of 1st, 2nd, 3rd and 4th grades, and even citing the impossibility of the existence of formulas equations above 4 degree. In the study of the geometric method, we noticed how this geometry efficiently present in solving problems and those solutions are possible only by ruler and compass, this topic was discussed methods for solving equations of 1st and 2nd grade. About Computational Method, the study on the iterative resolution methods that are processes of successive approximations for the calculation of zeros of the function, this item was discussed methods of Newton, bisection, secant, and ropes fixed point was emphasized in so that at the end of the topic the methods under warranty and agility aspects of convergence and computational effort were compared. The achieved results show the importance of the topic of problem solving with emphasis on the statements of the formulas, and the historical context can help to demystify the process of creating and humanization of mathematics.

Page generated in 0.0757 seconds