Spelling suggestions: "subject:"méthode dde"" "subject:"méthode dee""
91 |
On building a Python-based Monte Carlo light simulation package for biophotonics : with focus on complex 3-dimensional arbitrary geometries and hardware accelerationVigneault, Marc-André 23 September 2024 (has links)
L'essor du Python comme language scientifique et la popularité grandissante du calcul GPGPU constitue un environnement fertile pour le développement de PyTissueOptics, un simulateur de propagation de la lumière dans les tissus, qui est un module entièrement programmé en Python, qui se concentre sur la mise en œuvre simple et compréhensible des mécanismes de propagation de la lumière, afin de catalyser la démocratisation de cette technique. Dans ce mémoire, nous explorons la théorie derrière le modèle de Monte Carlo, visitons les aspects techniques de la réalisation du projet, expliquons les différentes possibilités d'utilisation et comparons avec des modules connus, tel que MCML et MCX. / The rise of Python as a scientific language and the growing popularity of GPGPU computing creates a fertile environment for the development of PyTissueOptics, a light propagation simulator in tissues, which is a module entirely programmed in Python. It focuses on the simple and comprehensible implementation of light propagation mechanisms, aiming to catalyze the democratization of this technique. In this thesis, we explore the theory behind the Monte Carlo model, examine the technical aspects of the project's realization, explain the various usage possibilities, and compare it with known modules, such as MCML and MCX.
|
92 |
Mechanical behavior of rubber foams via numerical methodsHeydari, Amirhosein 10 July 2024 (has links)
Cette recherche vise à améliorer la compréhension et l'optimisation des mousses de caoutchouc, en particulier des mousses de caoutchouc naturel. Cela se fait par une intégration complète des résultats de laboratoire et des modèles par éléments finis (EF). L'objectif principal est de simuler, analyser et concevoir des mousses de caoutchouc avec des propriétés mécaniques sur mesure en utilisant des modèles EF pour diverses applications, telles que dans l'industrie du pneu. La nouveauté réside dans l'incorporation de la géométrie 3D réelle dans les modèles EF, abordant une lacune critique dans la littérature actuelle qui repose souvent sur des méthodes mathématiques ou analytiques simplifiées. L'approche interdisciplinaire du projet combine des données expérimentales et des méthodes numériques, offrant une stratégie efficace et économique pour le développement de produits en mousse de caoutchouc optimisés. Tout au long de la recherche, différents sous-objectifs sont poursuivis, notamment la modélisation des matériaux hyperélastiques non moussés, l'exploration de la modélisation géométrique 3D avancée, l'incorporation de la modélisation multi phase, et l'analyse de la concentration des contraintes et des points de rupture. Pour atteindre ces objectifs, différents facteurs affectant les propriétés mécaniques des mousses de caoutchouc ont été sélectionnés et étudiés. Ces facteurs incluent la densité relative de la mousse (0,3 à 0,5), la teneur en agent moussant dans les mousses de caoutchouc naturel (2 phr à 10 phr) et dans les mousses d'élastomère polyoléfinique (2 phr à 5 phr). La conclusion résume les principales résultats, souligne l'impact potentiel de la recherche et décrit les perspectives d'exploration dans le domaine des mousses de caoutchouc. / This work aims to advance the understanding and optimization of rubber foams, especially natural rubber (NR) foams. This is done through a comprehensive integration of laboratory results and finite element (FE) models. The man goal is to simulate, analyze, and design rubber foams with tailored mechanical properties using FE models for diverse applications, such as in the tire industry. The novelty lies in incorporating real 3D geometry into FE models, addressing a critical gap in the current literature that often relies on simplified mathematical or analytical methods. The project's interdisciplinary approach combines experimental data and numerical methods, providing an efficient and cost-effective strategy for the development of optimized rubber foam products. Throughout the research, different sub-objectives are pursued, including modeling hyperelastic unfoamed materials, exploring advanced 3D geometric modeling, incorporating multiphase modeling, and analyzing stress concentration and failure points. To achieve these objectives, different factors affecting the mechanical properties of rubber foams have been selected and investigated. These factors include the relative foam density (0.3 to 0.5), foaming agent content in natural rubber (NR) foams (2 phr to 10 phr) and in polyolefin elastomer (POE) foams (2 phr to 5 phr). The conclusion summarizes the key findings by underscoring the research's potential impact, and outlines avenues for future exploration in the field of rubber foams.
|
93 |
Modélisation à l'échelle mésoscopique de la cellule élémentaire d'un renfort composite 3D interlock à partir de tomographies à rayon XGeorgiou, Aubin 10 February 2024 (has links)
Ce mémoire présente les travaux de mise en œuvre d'un modèle numérique par éléments finis de la cellule unitaire représentative d'un composite interlock 3D, à partir de tomographies. Ce matériau se compose de torons tissés dans les directions chaine et trame, ainsi qu'à travers l'épaisseur. Ce type d'interlock 3X a été largement étudié ces dix dernières années, sans pour autant que des modèles numériques performants soient réalisés, ce qui rend nécessaire une modélisation numérique de sa cellule unitaire. Il présente pourtant des avantages vis-à-vis des autres types de composites, notamment grâce à l'absence du phénomène de délamination, cause principale de dégradation des composites. Ce travail présente la démarche et les moyens mis en œuvre pour obtenir la cellule unitaire numérique du matériau. Des tomographies de différents états du tissu sec, non compacté et compacté, ont été réalisées afin de générer un modèle éléments finis à partir du logiciel de traitement d'image AVIZO ainsi que du logiciel de génération de textile TEXGEN. Un modèle simplifié d'une tranche de cellule unitaire a été choisi afin de simuler et valider le procédé de compaction numérique avec le logiciel élément finis Abaqus. Les résultats du modèle de compaction ont été comparés aux tomographies du tissu sec compacté. Les résultats de cette simulation simplifiée sont prometteurs. La déformation et les déplacements des torons obtenus sur la cellule unitaire du tissu sec simulé sont très proches de ceux observés sur les tomographies du tissu compacté de la sorte. / This thesis presents the work conducted toward the development of a finite element model of the representative unit cell of a 3D interlock composite, based on tomographies. This material is composed of yarns woven in the warp and weft directions, as well as through the thickness. This kind of 3X interlock has been very little studied to date, which makes numerical modelling of its unit cell necessary. However, it present advantages over other types of composites, in particular the absence of delamination phenomenon, the main cause of composite degradation. This work presents the approach and the means employed to obtain the numerical unit cell of the material. Tomographies of different states of the dry, uncompacted and compacted fabric were carried out in order to generate a finite element model from the image processing software AVIZO and the textile generation software TEXGEN. A simplified model of a unit cell slice was chosen in order to simulate and validate the numerical compaction process with the Abaqus finite element software. The results of the compaction model were compared with tomographies of dry texile. The results of this simplified simulation are promising. The deformation and displacements of the yarns obtained on the unit cell of the simulated dry textile are very close to those observed on tomographies of the compacted textile.
|
94 |
Problèmes de changement de phase avec la méthode CutFEMTchinda Ngueyong, Ismaël 10 June 2024 (has links)
Cette thèse porte sur la modélisation numérique des problèmes de changement de phase. Le but est de proposer un algorithme robuste, basé essentiellement sur la méthode CutFEM, pour résoudre le problème avec la plus grande précision possible. Dans notre démarche, la méthode level-set est employée pour une représentation implicite de l'interface entre différentes phases, tandis que l'imposition des conditions essentielles sur cette dernière se fait à l'aide de la variante symétrique de la méthode de Nitsche. Le premier résultat de la thèse porte sur le développement d'un post-traitement fiable, facile à implémenter, pour une meilleure estimation du flux à travers une frontière immergée. La solution proposée est inspirée de la méthode de l'intégrale de domaine, à la différence que nous introduisons une stabilisation de type Ghost Penalty pour éliminer la sensibilité de la qualité de l'approximation à l'interface par rapport aux nœuds du maillage. L'idée est validée à travers une série d'exemples 2D et 3D.Le deuxième résultat concerne le développement d'un solveur CutFEM pour la simulation des problèmes de Stefan à deux phases sans convection. Dans notre approche, nous nous servons du premier résultat pour une meilleure évaluation de la vitesse de l'interface. Quant à la stabilisation des formulations d'extension de la vitesse et du transport de la fonction level-set, nous avons opté pour la méthode CIP (Continuous Interior Penalty) qui a déjà fait preuve d'une grande efficacité pour des problèmes fortement dominés par la convection. Des exemples numériques 2D permettent de confirmer l'efficacité de notre algorithme puisque des taux de convergence optimaux sont obtenus. Une simulation 3D est également proposée pour démontrer la validité du solveur dans une configuration plus réaliste. Pour le dernier résultat, nous reconsidérons le problème de Stefan, mais cette fois en prenant en compte la convection naturelle dans la phase liquide. L'équation de conduction de la chaleur est alors modifiée par l'ajout d'un terme de convection. De plus, cette équation est couplée aux équations de Navier-Stokes, introduisant de fait des non-linéarités supplémentaires. Un schéma itératif basé sur la méthode de Newton est alors proposé pour une résolution efficace du système. Les autres étapes de résolution sont assez similaires à celles de l'algorithme développé pour les problèmes de Stefan sans convection. Une étude numérique approfondie du solveur est présentée. Premièrement, l'efficacité de la discrétisation en temps et en espace est étudiée pour des problèmes (relativement simples) avec des solutions manufacturées. Ensuite, pour un problème beaucoup plus complexe modélisant la solidification de l'eau, une comparaison des résultats obtenus numériquement avec les résultats expérimentaux connus dans la littérature est présentée. Enfin, d'autres problèmes de changement de phase encore plus complexes tels que la fusion du gallium dans une cavité rectangulaire, ou encore celle du n-octadécane dans une cavité cubique sont considérés, et une comparaison des résultats de simulation avec les données expérimentales est également présentée. / This thesis focuses on the numerical modeling of phase change problems. The aim is to propose a robust CutFEM-based algorithm to solve the problem with the highest possible accuracy. In our approach, the level-set technique is used for an implicit representation of the interface, whereas the imposition of the essential conditions on the interface is done using the symmetric variant of the Nitsche method. The first result of the thesis is the development of a reliable, easy-to-implement post-processing for an accurate estimate of the flux across an interface. The proposed solution is inspired by the domain integral method, with the difference that we introduce Ghost Penalty stabilization to eliminate the sensitivity to the interface location relative to the mesh nodes. The accuracy of the method is validated through a series of two- and three-dimensional examples. The second result concerns the development of a CutFEM method for the numerical simulation of two-phase Stefan's problems without convection. In our approach, we use the idea of the first result for an accurate evaluation of the normal speed of the interface. Regarding the stabilization of the velocity extension and front transportation problems, we opted for the Continuous Interior Penalty method which has shown great effectiveness for convection-dominated problems. Two-dimensional numerical examples are used to confirm the effectiveness of our algorithm since optimal convergence rates are achieved. A three-dimensional simulation is also provided to demonstrate the validity of the solver in a more realistic configuration. For the last result, we reconsider the Stefan problem, but this time taking into account natural convection in the liquid phase. In this phase, the heat conduction equation is then modified by the addition of a convection term. Furthermore, this equation is coupled to the Navier-Stokes equations, thereby introducing additional nonlinearities. An iterative scheme based on Newton's method is then proposed for an efficient solution of the system. The other steps of the proposed solver are quite similar to those of the solver developed for Stefan problems without convection. An in-depth numerical study of the solver is presented. First, the efficiency of discretization in time and space is studied for (relatively simple) problems with manufactured solutions. Then, for a much more complex problem modeling the solidification of water, a comparison of the results obtained numerically with the experimental results known in the literature is presented. Finally, other even more complex phase change problems such as the fusion of gallium in a rectangular cavity, or that of n-octadecane in a cubical test cell are considered, and a comparison of the simulation results with experimental data is also provided.
|
95 |
Solveur GCR pour les méthodes de type mortierPouliot, Benoît 24 April 2018 (has links)
Les méthodes de type mortier, introduites en 1987 par Bernardi, Maday et Patera, font partie de la grande famille des méthodes par décomposition de domaine. Combinées à la méthode des éléments finis, elles consistent à construire une discrétisation non conforme des espaces fonctionnels du ou des problèmes étudiés. Les trente dernières années de recherche portant sur ces méthodes ont permis d'acquérir des connaissances solides tant au point de vue théorique que pratique. Aujourd'hui, elles sont naturellement utilisées pour résoudre des problèmes d'une grande complexité. Comme applications, nous pouvons simplement penser à des problèmes de contact entre divers solides, à des problèmes d'interaction fluide-structure ou à des problèmes impliquant des mécanismes en mouvement tel des engrenages ou des alternateurs. Cette thèse de doctorat a pour objectif d'expliquer en détail la construction des méthodes de type mortier et de développer des algorithmes adaptés à la résolution des systèmes ainsi créés. Nous avons décidé d'employer l'algorithme du GCR (Generalized Conjugate Residual method) comme solveur de base pour nos calculs. Nous appliquons d'abord une factorisation du système linéaire global grâce à son écriture naturelle en sous-blocs. Cette factorisation génère un système utilisant un complément de Schur qu'il faut résoudre. C'est sur ce sous-système que nous employons l'algorithme du GCR. Le complément de Schur est préconditionné par une matrice masse redimensionnée, mais il est nécessaire de modifier l'algorithme du GCR pour obtenir des résultats théoriques intéressants. Nous montrons que la convergence de ce solveur modifié est indépendante du nombre de sous-domaines impliqués ainsi que de ses diverses composantes physiques. Nous montrons de plus que le solveur ne dépend que légèrement de la taille des éléments d'interface. Nous proposons une solution élégante dans le cas de sous-domaines dits flottants. Cette solution ne requiert pas la modification du solveur décrit plus haut. Des tests numériques ont été effectués pour montrer l'efficacité de la méthode du GCR modifiée dans divers cas. Par exemple, nous étudions des problèmes possédant plusieurs échelles au niveau de la discrétisation et des paramètres physiques. Nous montrons aussi que ce solveur a une accélération importante lorsqu'il est employé en parallèle. / The mortar methods, introduced in 1987 by Bernadi, Maday and Patera, are part of the large family of domain decomposition methods. Combined to the finite element method, they consist in constructing a nonconforming discretization of the functional space of the problem under consideration. The last thirty years of research about these methods has provided a solid knowledge from a theoretical and practical point of view. Today, they are naturally used to solve problems of great complexity such as contact problems between deformable solids, fluid-structure interaction problems or moving mechanisms problems like gears and alternators. The aim of this thesis is to explain in details the principles of mortar methods and to develop adapted algorithms to solve the generated linear systems. We use the GCR algorithm (Generalized Conjugate Residual method) as our basic solver in our computations. We first apply a factorization of the global linear system using the natural sub-block structure of the matrix. This factorization generates a system using a Schur complement. It is on this sub-system that we use the GCR algorithm. The Schur complement is preconditioned by a rescaled mass matrix, but it is necessary to slightly modify the GCR algorithm to obtain theorical results. We show that the convergence of this modified solver is independent of the number of subdomains involved and of the diverse physical parameters. We also show that the solver slightly depends on the size of the interface mesh. We present a strategy to take care of the so called floating subdomains. The proposed solution does not require any modification to the solver. Numerical tests have been performed to show the efficiency of the modified GCR method in various cases. We consider problems with several discretization and physical parameter scales. We finally show that the solver presents an important speedup in parallel implementation.
|
96 |
Intégration d'une méthode d'optimisation topologique dans le processus de CAO/FAO pour des pièces tridimensionnellesPicher-Martel, Gilles-Philippe January 2010 (has links)
Ce projet de maîtrise présente l'intégration d'une méthode d'optimisation topologique dans le processus de Conception et Fabrication Assistée par Ordinateur. Il fut réalisé dans le cadre d'un projet multidisciplinaire issu d'une collaboration entre le groupe de recherche en optimisation des structures de l'Université de Sherbrooke (OptiS) et l'Équipe de Recherche en Intégration CAO-Calcul de l'UQTR (ÉRICCA).Ce projet multidisciplinaire consiste à développer un gratuiciel multiplateforme d'optimisation des structures intégrant la CAO à l'optimisation afin de permettre le développement complet de pièces ou structures mécaniques en partant du modèle CAO initial, jusqu'au modèle CAO final optimisé. Deux objectifs principaux sont visés dans le cadre de ce projet de maîtrise. Premièrement, implanter la méthode d'optimisation topologique par homogénéisation (méthode SIMP) pour des structures quelconques en 3D. Deuxièmement, développer une méthode de lissage pour réduire le bruit présent sur le maillage optimisé résultant de l'optimisation topologique par la méthode SIMP. Nous avons atteint ces deux objectifs en développant un processus d'optimisation complètement automatique en sept étapes. Elles correspondent respectivement à la modélisation géométrique, l'entrée des données initiales du problème (conditions aux limites, matériau, etc.), la sous-division de la géométrie en sous-domaines de design et de non-design, le maillage automatique adapté aux sous-domaines multiples, l'optimisation topologique, le lissage du maillage de surface et finalement la reconstruction de la géométrie finale. Les résultats ont démontré que notre implantation de la méthode SIMP fonctionne et donne des résultats très intéressants qui s'apparentent aux résultats présentés dans la littérature. Néanmoins, le développement d'une méthode de lissage de triangulation basée sur les méthodes classiques a démontré que ces méthodes sont très mal adaptées à des maillages très bruités tels que ceux obtenus avec la méthode SIMP. En somme, ce projet a permis de faire un grand pas vers l'intégration complète de l'optimisation comme une étape à part entière du processus de CAO/FAO.
|
97 |
Méthodes de Runge Kutta de rang supérieur à l'ordreMetzger, Claude 11 October 1967 (has links) (PDF)
.
|
98 |
Soutiens et contraintes de la relation d'aide reliés aux occupations : perceptions de résidants et du responsable d'une résidence d'accueil en santé mentaleFelx, Amélie January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
99 |
Simulation de fluide avec des noyaux constants par morceauxSamson, Etienne January 2014 (has links)
La simulation de fluide fait l’objet de recherches actives en infographie. Largement
utilisée dans le domaine des jeux vidéos ou de l’animation, elle permet de simuler le
comportement des liquides, des gaz et autres phénomènes pouvant être apparentés
à un fluide. Pour cela, la simulation de fluide dispose d’outils de calcul numériques
adaptés, permettant de produire des animations visuellement réalistes pour un temps
de calcul raisonnable. Ce mémoire décrit les deux principales approches utilisées en
simulation de fluide : l’approche eulérienne et l’approche lagrangienne, ainsi que certains outils numériques associés, que sont les différences finies et les fonctions de
lissage. Chaque approche et chaque outil numérique possède ses avantages et ses inconvénients. Les noyaux constants par morceaux constituent un nouvel outil de calcul
numérique et ouvrent de nouvelles possibilités à la simulation de fluide. Ils seront étudiés en détails puis intégrés dans une simulation de fluide eulérienne. L’atout notable qu’apportent les noyaux constants par morceaux est la possibilité d’augmenter la précision des calculs là où cela est jugé nécessaire dans la simulation. En augmentant la précision des calculs aux endroits clés, où sont susceptibles d’apparaitre des effets visuellement attrayants comme les tourbillons ou les remous, nous améliorons la qualité des animations.
|
100 |
Modélisation des structures sandwiches avec un amortissement viscoélastique intégré par une méthode hybride FEM-TMMRzig, Imen January 2016 (has links)
Cette thèse traite de la modélisation numérique de la réponse vibro-acoustique de structures sandwiches-composites avec matériaux viscoélastiques intégrés soumises à différents types d’excitations mécaniques et acoustiques.
Dans une première phase, nous avons utilisé une approche de synthèse modale pour calculer les principaux indicateurs vibro-acoustiques de la structure : la vitesse quadratique, la puissance rayonnée, la perte par transmission…Ensuite, l’intégrale de Rayleigh a été exploitée pour calculer la puissance rayonnée de chaque structure. L’obstacle majeur que nous avons alors surmonté, était de gérer efficacement la dépendance en fréquence des propriétés de la couche viscoélastique dans l’approche de synthèse modale.
Dans une second phase, en partant du champ vibratoire calculé dans la première étape, nous avons développé une méthode hybride FEM-TMM (méthode des éléments finis – méthode de matrices de transfert) pour prédire avec précision et en un temps de calcul acceptable, et jusqu’en hautes fréquences, les principaux paramètres de conception vibro-acoustique de ces structures, notamment l’amortissement équivalent et les nombres d’ondes suivant les deux directions spatiales x et y de propagation de l’onde acoustique. Les validations numériques que nous avons effectuées, montrent bien la robustesse de l'algorithme que nous avons développé. Ce dernier reste toutefois limité à des structures planes.
Dans une troisième phase de ce travail, une étude paramétrique sur l’effet de l’emplacement et de la forme de la couche viscoélastique a été réalisée. Cette étude a été faite en se servant de la méthode hybride FEM-TMM pour calculer la réponse acoustique (puissance transmise et perte par transmission).
|
Page generated in 0.0491 seconds