• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'estimation adaptative de fonctions anisotropes

Nicolas, Klutchnikoff 14 December 2005 (has links) (PDF)
Cette thèse est consacrée à l'étude de problèmes statistiques d'estimation non paramétrique. Un signal bruité multidimensionnel est observé (par exemple une image dans le cas de la dimension deux) et nous nous fixons l'objectif de le reconstruire \emph{au mieux}.<br /><br />Pour réaliser ce but, nous nous plaçons dans le cadre de la théorie adaptative au sens minimax : nous cherchons un seul estimateur qui atteint simultanément sur chaque espace fonctionnel d'une collection la <>.<br /><br />Nous donnons un nouveau critère pour choisir une famille de normalisations optimale. Ce critère est plus sophistiqué que ceux introduits par Lepski (1991) puis Tsybakov (1998) et est mieux adapté au cas multidimensionnel.<br /><br />Ensuite, nous donnons deux résultats adaptatifs (en estimation ponctuelle) par rapport à deux collections différentes d'espaces de H
2

Perforamances statistiques d'estimateurs non-linéaires

Chichignoud, Michael 25 November 2010 (has links) (PDF)
On se place dans le cadre de l'estimation non paramétrique dans le modèle de régression. Dans un premier temps, on dispose des observations Y dont la densité $g$ est connue et dépend d'une fonction de régression $f(X)$ inconnue. Dans cette thèse, cette fonction est supposée régulière, i.e. appartenant à une boule de Hölder. Le but est d'estimer la fonction $f$ à un point $y$ (estimation ponctuelle). Pour cela, nous développons un estimateur local de type {\it bayésien}, construit à partir de la densité $g$ des observations. Nous proposons une procédure adaptative s'appuyant sur la méthode de Lepski, qui permet de construire un estimateur adaptatif choisi dans la famille des estimateurs bayésiens locales indexés par la fenêtre. Sous certaines hypothèses suffisantes sur la densité $g$, notre estimateur atteint la vitesse adaptative optimale (en un certain sens). En outre, nous constatons que dans certains modèles, l'estimateur bayésien est plus performant que les estimateurs linéaires. Ensuite, une autre approche est considérée. Nous nous plaçons dans le modèle de régression additive, où la densité du bruit est inconnue, mais supposée symétrique. Dans ce cadre, nous développons un estimateur dit de {\it Huber} reposant sur l'idée de la médiane. Cet estimateur permet d'estimer la fonction de régression, quelque soit la densité du bruit additif (par exemple, densité gaussienne ou densité de Cauchy). Avec la méthode de Lepski, nous sélectionnons un estimateur qui atteint la vitesse adaptative classique des estimateurs linéaires sur les espaces de Hölder.
3

Estimation adaptative avec des données transformées ou incomplètes. Application à des modèles de survie

Chagny, Gaëlle 05 July 2013 (has links) (PDF)
Cette thèse présente divers problèmes d'estimation fonctionnelle adaptative par sélection d'estimateurs en projection ou à noyaux, utilisant des critères inspirés à la fois de la sélection de modèles et des méthodes de Lepski. Le point commun de nos travaux est l'utilisation de données transformées et/ou incomplètes. La première partie est consacrée à une procédure d'estimation par "déformation'', dont la pertinence est illustrée pour l'estimation des fonctions suivantes : régression additive et multiplicative, densité conditionnelle, fonction de répartition dans un modèle de censure par intervalle, risque instantané pour des données censurées à droite. Le but est de reconstruire une fonction à partir d'un échantillon de couples aléatoires (X,Y). Nous utilisons les données déformées (ф(X),Y) pour proposer des estimateurs adaptatifs, où ф est une fonction bijective que nous estimons également (par exemple la fonction de répartition de X). L'intérêt est double : d'un point de vue théorique, les estimateurs ont des propriétés d'optimalité au sens de l'oracle ; d'un point de vue pratique, ils sont explicites et numériquement stables. La seconde partie s'intéresse à un problème à deux échantillons : nous comparons les distributions de deux variables X et Xₒ au travers de la densité relative, définie comme la densité de la variable Fₒ(X) (Fₒ étant la répartition de Xₒ). Nous construisons des estimateurs adaptatifs, à partir d'un double échantillon de données, possiblement censurées. Des bornes de risque non-asymptotiques sont démontrées, et des vitesses de convergences déduites.
4

Régression non-paramétrique et information spatialement inhomogène

Gaiffas, Stéphane 08 December 2005 (has links) (PDF)
Nous étudions l'estimation non-paramétrique d'un signal à partir de<br />données bruitées spatialement inhomogènes (données dont la quantité<br />varie sur le domaine d'estimation). Le prototype d'étude est le modèle<br />de régression avec design aléatoire. Notre objectif est de comprendre<br />les conséquences du caractère inhomogène des données sur le problème<br />d'estimation dans le cadre d'étude minimax. Nous adoptons deux points<br />de vue : local et global. Du point de vue local, nous nous intéressons<br />à l'estimation de la régression en un point avec peu ou beaucoup de<br />données. En traduisant cette propriété par différentes hypothèses sur<br />le comportement local de la densité du design, nous obtenons toute une<br />gamme de nouvelles vitesses minimax ponctuelles, comprenant des<br />vitesses très lentes et des vitesses très rapides. Puis, nous<br />construisons une procédure adaptative en la régularité de la<br />régression, et nous montrons qu'elle converge avec la vitesse minimax<br />à laquelle s'ajoute un coût minimal pour l'adaptation locale. Du point<br />de vue global, nous nous intéressons à l'estimation de la régression<br />en perte uniforme. Nous proposons des estimateurs qui convergent avec<br />des vitesses dépendantes de l'espace, lesquelles rendent compte du<br />caractère inhomogène de l'information dans le modèle. Nous montrons<br />l'optimalité spatiale de ces vitesses, qui consiste en un renforcement<br />de la borne inférieure minimax classique pour la perte uniforme. Nous<br />construisons notamment un estimateur asymptotiquement exact sur une<br />boule de Hölder de régularité quelconque, ainsi qu'une bande de<br />confiance dont la largeur s'adapte à la quantité locale de données.
5

Estimation adaptative avec des données transformées ou incomplètes. Application à des modèles de survie / Adaptive estimation with warped or incomplete data. Application to survival analysis

Chagny, Gaëlle 05 July 2013 (has links)
Cette thèse présente divers problèmes d'estimation fonctionnelle adaptative par sélection d'estimateurs en projection ou à noyaux, utilisant des critères inspirés à la fois de la sélection de modèles et des méthodes de Lepski. Le point commun de nos travaux est l'utilisation de données transformées et/ou incomplètes. La première partie est consacrée à une procédure d'estimation par "déformation'', dont la pertinence est illustrée pour l'estimation des fonctions suivantes : régression additive et multiplicative, densité conditionnelle, fonction de répartition dans un modèle de censure par intervalle, risque instantané pour des données censurées à droite. Le but est de reconstruire une fonction à partir d'un échantillon de couples aléatoires (X,Y). Nous utilisons les données déformées (ф(X),Y) pour proposer des estimateurs adaptatifs, où ф est une fonction bijective que nous estimons également (par exemple la fonction de répartition de X). L'intérêt est double : d'un point de vue théorique, les estimateurs ont des propriétés d'optimalité au sens de l'oracle ; d'un point de vue pratique, ils sont explicites et numériquement stables. La seconde partie s'intéresse à un problème à deux échantillons : nous comparons les distributions de deux variables X et Xₒ au travers de la densité relative, définie comme la densité de la variable Fₒ(X) (Fₒ étant la répartition de Xₒ). Nous construisons des estimateurs adaptatifs, à partir d'un double échantillon de données, possiblement censurées. Des bornes de risque non-asymptotiques sont démontrées, et des vitesses de convergences déduites. / This thesis presents various problems of adaptive functional estimation, using projection and kernel methods, and criterions inspired both by model selection and Lepski's methods. The common point of the studied statistical setting is to deal with transformed and/or incomplete data. The first part proposes a method of estimation with a "warping" device which permits to handle the estimation of functions such as additive and multiplicative regression, conditional density, hazard rate based on randomly right-censored data, and cumulative distribution function from current-status data. The aim is to estimate a function from a sample of random variable (X,Y). We use the warped data (ф(X),Y), to propose adaptive estimators, where ф is a one-to-one function that we also estimate (e.g. the cumulative distribution function of X). The interest is twofold. From the theoretical point of view, the estimators are optimal in the oracle sense. From the practical point of view, they can be easily computed, thanks to their simple explicit expression. The second part deals with a two-sample problem : we compare the distribution of two variables X and Xₒ by studying the relative density, defined as the density of Fₒ(X) (Fₒ is the c.d.f. of Xₒ). We build adaptive estimators, from a double data-sample, possibly censored. Non-asymptotic risk bounds are proved, and convergence rates are also derived.

Page generated in 0.07 seconds