• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la résolution numérique des problèmes de Helmholtz

Grigoroscuta-Strugaru, Magdalena 18 December 2009 (has links) (PDF)
Dans ce travail, nous nous sommes intéressés au développement et à l'analyse numérique de méthodes numériques capables de résoudre efficacement les problèmes de Helmholtz à 2D, notamment en régime moyenne et haute fréquence. La méthode que nous proposons s'inscrit dans la lignée des méthodes de type Galerkin discontinues (DG). Dans chaque élément du maillage, la solution est approchée en utilisant une superposition d'ondes planes. La continuité de la solution aux interfaces est renforcée en utilisant des multiplicateurs de Lagrange. La méthodologie proposée est une procédure en deux étapes: nous résolvons d'abord des problèmes locaux bien posés et ensuite un système global issu de la condition de continuité imposée sur les interfaces. Les plus importantes propriétés de la méthode sont: (a) les problèmes locaux obtenus sont associés à des matrices Hermitiennes et définies positives et (b) le système global, à résoudre dans la deuxième étape, est associé à une matrice Hermitienne et semi-définie positive. Les résultats numériques obtenus montrent la supériorité de la méthode proposée par rapport aux méthodes de type élément fini standard, mais aussi par rapport à d'autres méthodes de type DG, comme par exemple celle développée par Farhat et al (2003).
2

Simulation numérique des écoulements de liquides polymères

Joie, Julie 25 November 2010 (has links) (PDF)
Il existe peu de codes commerciaux pour la simulation numérique des écoulements de liquides polymères. Les difficultés proviennent des propriétés intrinsèques des polymères, qui sont des fluides viscoélastiques non-newtoniens. Ceci implique un couplage entre la viscoélasticité du liquide et l'écoulement, couplage quantifié par le nombre de Weissenberg. D'un point de vue numérique, la source du problème est la perte de convergence des algorithmes lorsque ce nombre devient trop élevé. Cette thèse porte sur le développement de schémas numériques robustes pour la simulation de ces écoulements en considérant principalement le modèle de Giesekus. Nous nous sommes d'abord intéressés au problème de Stokes et nous avons fait l'étude d'une méthode de Galerkin discontinue moins coûteuse et plus robuste que la méthode "Interior Penalty" classique. Nous avons fait une analyse a priori et a posteriori et nous avons mis en évidence les relations entre cette méthode dG et les éléments finis non-conformes. Les résultats théoriques obtenus ont été validés numériquement. Par la suite, nous avons considéré le modèle à trois champs de Giesekus. La vitesse et la pression sont approchées par éléments finis non-conformes tandis que l'équation constitutive est traitée à l'aide d'éléments finis discontinus et d'un schéma décentré de type Lesaint-Raviart. L'analyse de ces schémas dans le cas quadrangulaire et triangulaire a été faite pour le problème de Stokes sous-jacent. Ces schémas ont ensuite été implémentés dans la librairie C++ Concha. Nous avons effectué des comparaisons avec des données expérimentales mettant en évidence le bon comportement du modèle de Giesekus mais aussi avec le code commercial Polyflow et une solution semi-analytique afin de valider nos schémas numériques. Nous avons obtenu des simulations réalistes pour des nombres de Weissenberg élevés sur des cas-tests populaires : écoulement autour d'un cylindre, contractions 4:1 et 4:1:4
3

Méthodes d'éléments finis et estimations d'erreur a posteriori

Dhondt-Cochez, Sarah 30 November 2007 (has links) (PDF)
Dans cette thèse, on développe des estimateurs d'erreur a posteriori, pour l'approximation par éléments finis des équations de Maxwell en régime harmonique et des équations de réaction-diffusion. Introduisant d'abord, pour le système de Maxwell, des estimateurs de type résiduel, on étudie la dépendance des constantes intervenant dans les bornes inférieures et supérieures en fonction de la variation des coefficients de l'équation, en les considérant d'abord constants puis constants par morceaux. On construit ensuite un autre type d'estimateur, basé sur des flux équilibrés et la résolution de problèmes locaux, que l'on étudie dans le cadre des équations de réaction-diffusion et du système de Maxwell. Ayant introduit plusieurs estimateurs pour l'équation de Maxwell, on en propose une étude comparative, au travers de tests numériques présentant le comportement de ces estimateurs pour des solutions particulières sur des maillages uniformes ainsi que les maillages obtenus par des procédures de raffinement de maillages adaptatifs. Enfin, dans le cadre des équations de diffusion, on étend la construction des estimateurs équilibrés aux méthodes éléments finis de type Galerkin discontinues.

Page generated in 0.0888 seconds