• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strings of congruent primes in short intervals

Freiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m. In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form. In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
2

Propriétés multiplicatives d'entiers soumis à des conditions digitales

Col, Sylvain 22 June 1996 (has links) (PDF)
Pour une base fixée, les entiers ellipséphiques (c'est-à-dire les entiers dont l'écriture n'utilise que certains chiffres) et les palindromes forment des sous ensembles éparses des entiers, ensembles définis par des conditions digitales. Nous étudions si ces ensembles ont des propriétés multiplicatives similaires à celles des entiers.<br>Nous évaluons d'abord les grands moments de la série génératrice des entiers ellipséphiques. Comme application, nous en déduisons l'existence d'un 0 < c < 1 tel que pour tout entier k, une infinité d'entiers ellipséphiques n possédant un diviseur p^k de l'ordre de n^c, p désignant un nombre premier. De plus, le nombre de tels entiers est de l'ordre de grandeur attendu.<br>Nous établissons ensuite un résultat de crible où les modules possédant un nombre anormalement grand de diviseurs sont écartés du terme d'erreur. Nous en déduisons l'existence d'une proportion positive d'entiers ellipséphiques friables c'est-à-dire possédant tous leurs facteurs premiers majorés par n^c, pour une constante c < 1 fixée.<br>Nous montrons enfin à l'aide de techniques élémentaires comment réduire l'étude de la série génératrice des palindromes à une série proche de celle des entiers ellipséphiques ce qui permet d'étudier la répartition des palindromes dans les progressions arithmétiques et ainsi d'obtenir une majoration de l'ordre de grandeur attendu du nombre de palindromes premiers. Nous en déduisons en particulier l'existence d'une infinité de palindromes possédant en base 10 au plus 372 facteurs premiers (comptés avec multiplicité).
3

Strings of congruent primes in short intervals

Freiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m. In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form. In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
4

Primes with a missing digit : distribution in arithmetic progressions and sieve-theoretic applications

Nath, Kunjakanan 07 1900 (has links)
Le thème de cette thèse est de comprendre la distribution des nombres premiers, qui est un sujet central de la théorie analytique des nombres. Plus précisément, nous allons prouver des théorèmes de type Bombieri-Vinogradov pour les nombres premiers avec un chiffre manquant dans leur développement b-adique pour un grand entier positif b. La preuve est basée sur la méthode du cercle, qui repose sur la structure de Fourier des entiers avec un chiffre manquant et les sommes exponentielles sur les nombres premiers dans les progressions arithmétiques. En combinant nos résultats avec le crible semi-linéaire, nous obtenons une borne supérieure et une borne inférieure avec le bon ordre de grandeur pour le nombre de nombres premiers de la forme p=1+m^2 + n^2 avec un chiffre manquant dans une grande base impaire b. / The theme of this thesis is to understand the distribution of prime numbers, which is a central topic in analytic number theory. More precisely, we prove Bombieri-Vinogradov type theorems for primes with a missing digit in their b-adic expansion for some large positive integer b. The proof is based on the circle method, which relies on the Fourier structure of the integers with a missing digit and the exponential sums over primes in arithmetic progressions. Combining our results with the semi-linear sieve, we obtain an upper bound and a lower bound of the correct order of magnitude for the number of primes of the form p=1+m^2+n^2 with a missing digit in a large odd base b.
5

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
6

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0808 seconds