• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 368
  • 58
  • 46
  • 34
  • 15
  • 15
  • 14
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 692
  • 145
  • 122
  • 114
  • 105
  • 105
  • 95
  • 92
  • 90
  • 79
  • 62
  • 61
  • 61
  • 59
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Effects of Four New Brominated Flame Retardants on Hepatic Messenger RNA Expression, In Vitro Toxicity and In Ovo Toxicity in the Domestic Chicken (Gallus gallus)

Egloff, Caroline 09 May 2011 (has links)
Brominated flame retardants (BFR) such as hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO), bis(2-ethylhexyl)tetrabromophthalate (BEHTBP), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenylethane (DBDPE) are contaminants of environmental concern. These BFRs are replacement alternatives for some of the major production BFRs, which have been restricted from the marketplace due to their adverse health effects. Their presence in environmental matrices, including wild birds, suggests they should be tested for possible toxic effects. BFR alternatives have been detected in the eggs of colonial fish-eating birds, suggesting maternal transfer during ovogenesis and the potential for these chemicals to bioaccumulate through the food chain. However, information regarding the toxicity of HCDBCO, BEHTBP, BTBPE and DBDPE exposure in birds is lacking. This thesis consisted of a combined in vitro/in ovo approach to determine: 1) the concentration-dependent effects of these four BFR alternatives in chicken embryonic hepatocytes (CEH), and 2) the dose-dependent effects of HCDBCO and BTBPE in chicken embryos following injection into the air cell of eggs prior to incubation. Changes in the mRNA expression levels of genes previously found to be responsive to other BFRs were assessed in CEH and liver tissue, in addition to examining overt toxicity (i.e. cytotoxicity, pipping success). None of the BFRs tested were cytotoxic up to 60 µM HCDBCO, 60 µM BEHTBP, 1.4 µM BTBPE or 0.2 µM DBDPE in CEH. Injection doses up to 50 µg/g egg HCDBCO and 10 µg/g egg BTBPE had no effect on embryonic pipping success. The accumulation of HCDBCO and BTBPE was variable in liver and did not follow a linear uptake pattern with respect to injection dose, due in part to difficulties with the solubility of these chemicals in the dimethyl sulfoxide (DMSO) vehicle. In, CEH, HCDBCO caused a decrease in CYP1A4/5 mRNA at all concentrations tested, while CYP2H1 and CYP3A37 were induced only at 10 µM. In contrast, only TTR mRNA was down-regulated in hepatic tissue at all injection concentrations of HCDBCO. The highest concentration of BTBPE induced CYP1A4/5 mRNA to 115- and 18-fold in CEH, and 6.5- and 1.8-fold in liver tissue. In vitro and in ovo exposure to BTBPE caused a concentration-dependent decrease in DIO3 mRNA, while CYP3A37 was down-regulated 2-fold at 10 µg/g in liver tissue. In CEH, DBDPE induced CYP1A4/5 mRNA to a maximum of 29- and 59-fold at 0.2 µM, and increases in DIO1 mRNA and decreases in CYP3A37 mRNA were also observed. None of the gene targets were responsive to BEHTBP exposure in CEH. This is the first study to report on the toxicological and molecular effects of HCDBCO, BEHTBP, BTBPE and DBDPE in an avian species. Using this combined in vitro/in ovo approach has permitted the characterization of these four BFR alternatives by defining possible mechanisms of biological action in a model avian species, the chicken.
162

Regulation of alternative pre-mRNA splicing by depolarization/CaMKIV

Liu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown. In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16). In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly. We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well. This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
163

Regulation of Thyrotropin mRNA Expression in Red Drum, Sciaenops ocellatus

Jones, Richard Alan 2012 August 1900 (has links)
The role of thyroid-stimulating hormone (TSH) in the regulation of peripheral thyroid function in non-mammalian species is still poorly understood. Thyroxine (T₄), the principal hormone released from the thyroid gland in response to TSH stimulation, circulates with a robust daily rhythm in the sciaenid fish, red drum. Previous research has suggested that the red drum T₄ cycle is circadian in nature, driven by TSH secretion in the early photophase and inhibited by T₄ feedback in the early scotophase. To determine whether TSH is produced in a pattern consistent with driving this T₄ cycle, I developed quantitative real time RT-PCR (qPCR) techniques to quantify the daily cycle of expression of the pituitary TSH subunits GSU[alpha], and TSH[beta]. I found that pituitary TSH expression cycled inversely to, and 6-12 hours out of phase with, the T₄ cycle, consistent with the hypothesis that TSH secretion drives the T₄ cycle. To examine the potential role of deiodinases in negative feedback regulation of this TSH cycle, I also utilized qPCR to assess the pituitary expression patterns of the TH activating enzyme outer-ring deiodinase (Dio2) and the TH deactivating enzyme inner ring deiodinase (Dio3). Whereas Dio2 was not expressed with an obvious daily cycle, Dio3 was expressed in the pituitary mirroring the TSH cycle. These results are consistent with T₄ negative feedback on TSH and suggest that TH inactivation by pituitary cells is an important component of the negative feedback system. To further examine the TH regulation of this Dio3 cycle, I developed an immersion technique to administer physiological doses of T₃ and T₄ in vivo. Both hormones persist in static tank water for at least 40 hours. Immersion in 200ng/ml T₄ significantly increased both plasma T₄ and T₃ within physiological ranges above control at 4.5 hours. Immersion in 100ng/ml T₃ increased plasma T₃ within physiological ranges over control by 22 hours while significantly decreasing plasma T₄ below control, presumably through inhibition of TSH secretion. T₄ also significantly inhibited the expression of the TSH [alpha] and [beta] subunits at 4.5 and 22 hours of immersion whereas T₃ immersion significantly inhibited the expression of the [alpha] and [beta] subunits of TSH by 22 hours. Both Dio2 and Dio3 expression were significantly diminished by T3 and T₄ at 22 hours. Inhibition of circulating THs with the goitrogen methimazole significantly increased the expression of TSH. These results indicate that both T₄ and T₃ are capable of negative feedback regulation of TSH expression in red drum on a time scale consistent with the T₄ daily cycle, and further support Dio3 destruction of THs in the pituitary, potentially regulated by circulating T₄, as a critical component of negative feedback on TSH. This study supports the importance of central mechanisms acting through pituitary TSH secretion in regulating thyroid function in red drum.
164

EF-Tu and RNase E : Essential and Functionally Connected Proteins

Hammarlöf, Disa L. January 2011 (has links)
The rate and accuracy of protein production is the main determinant of bacterial growth. Elongation Factor Tu (EF-Tu) provides the ribosome with aminoacylated tRNAs, and is central for its activity. In Salmonella enterica serovar Typhimurium, EF-Tu is encoded by the genes tufA and tufB. A bacterial cell depending on tufA499-encoded EF-Tu mutant Gln125Arg grows extremely slowly. We found evidence that this is caused by excessive degradation of mRNA, which is suggested to be the result of transcription-translation decoupling because the leading ribosome is ‘starved’ for amino acids and stalls on the nascent mRNA, which is thus exposed to Riboendonuclease RNase E. The slow-growth phenotype can be reversed by mutations in RNase E that reduce the activity of this enzyme. We found that the EF-Tu mutant has increased levels of ppGpp during exponential growth in rich medium. ppGpp is usually produced during starvation, and we propose that Salmonella, depending on mutant EF-Tu, incorrectly senses the resulting situation with ribosomes ‘starving’ for amino acids as a real starvation condition. Thus, RelA produces ppGpp which redirects gene expression from synthesis of ribosomes and favours synthesis of building blocks such as amino acids. When ppGpp levels are reduced, either by over-expression of SpoT or by inactivation of relA, growth of the mutant is improved. We suggest this is because the cell stays in a fast-growth mode. RNase E mutants with a conditionally lethal temperature-sensitive (ts) phenotype were used to address the long-debated question of the essential role of RNase E. Suppressor mutations of the ts phenotype were selected and identified, both in RNase E as well as in extragenic loci. The internal mutations restore the wild-type RNase E function to various degrees, but no single defect was identified that alone could account for the ts phenotype. In contrast, identifying three different classes of extragenic suppressors lead us to suggest that the essential role of RNaseIE is to degrade mRNA. One possibility to explain the importance of this function is that in the absence of mRNA degradation by RNase E, the ribosomes become trapped on defective mRNAs, with detrimental consequences for continued cell growth.
165

Significance of low-abundance transcripts detected in Caenorhabditis elegans muscle SAGE libraries

Veiga, Mariana Barçante 11 1900 (has links)
Serial Analysis of Gene Expression (SAGE) on Caenorhabditis elegans RNA from FACS sorted embryonic body wall muscle cells has identified nearly 8000 genes expressed in nematode body wall muscle. Approximately 60% of these are genes are expressed at low levels (<5 tags/~50,000-100,000 tag library). Low-abundance transcripts have typically been overlooked since most are considered experimental or contamination errors. Consequently, research has been focused on transcripts that are most enriched in the particular tissue of interest. Here I focus on the analysis of low-expressed transcripts in the muscle SAGE libraries in order to investigate what percentage of these are in fact expressed in muscle and are not false positives. Most well characterized C. elegans body wall muscle genes are not expressed at low levels, therefore I anticipate that focusing on these rarely expressed genes will allow for the identification of muscle components that have been previously unrecognized. RT-PCR was performed on RNA isolated from purified body wall muscle cells to initially estimate what fraction of these low abundance transcripts present in the SAGE data are indeed expressed in muscle. I examined 128 genes, of which 84 were represented by a single SAGE tag. From this initial list, 38% of the low-expressed transcripts were verified for their presence in body wall muscle. Subsequently, reporter GFP fusions were used to deduce if these low-expressed transcripts are indeed expressed in vivo within muscle. Of the low-expressed genes that tested positive via RT-PCR, 42% showed in vivo expression in body wall muscle. When the results from the RT-PCR and in vivo expression experiments are combined, I can extrapolate that at least 16% of low-expressed genes identified by the SAGE libraries are in fact expressed in muscle and are not false positives. RNAi and knockout analysis were performed in order to investigate the role of low-expressed muscle genes in myofilament structure. RNAi results show that 14/34 (41%) of the genes screened had mild defects in myofilament organization. The SAGE libraries identified 6388 low-expressed transcripts, this work suggests that at least 16% (1022 genes) of these are in fact expressed in muscle and may reveal new components previously overlooked by other approaches.
166

Optimisation de la biosécurité du vecteur transposon piggyBac pour le transfert de gène : utilisation des ARN messagers et des insulateurs. / Optimization of the biosafety of the piggyBac transposon for gene transfer using mRNA and insulators

Bire, Solenne 09 December 2011 (has links)
Les progrès en biotechno]ogie ont permis le développement d’outils pour le transfert de gène intégratif en transgénèse, bioproduction et thérapie génique. Cependant, trois challenges majeurs doivent être relevés pour garantir un système sécurisé : l’innocuité et l’efficacité du transfert, l’intégration ciblée et contrôlée dans le génome, le niveau et la durée d’expression du transgène au cours du temps. Dans ce but, mes travaux de thèse ont consisté à tester des solutions pour améliorer la biosécurité du transposon piggyBac qui nécessite un plasmide porteur du gène d’intérêt à insérer dans le génome et une source de transposase catalysant la réaction d’intégration du transgène. Une des stratégies de ma thèse repose sur l’apport de la source de transposase sous forme d’ARN messager au lieu d’ADN afin d’améliorer la stabilité de l’intégration et de réduire les effets génotoxiques en limitant la transposase dans les cellules. Pour la première fois, la biodisponibilité de l’ARNm de la transposase et les conditions optimales d’utilisation en cellules humaines ont été déterminées pour augmenter la biosêcurité du système. Le second objectif de mes travaux consiste à améliorer l’expression du transgène en ajoutant des insulateurs connus pour s’opposer à l’extinction de l’expression des gênes. En termes de biosécurité, cette stratégie permet de réduire le nombre de copies du transgène nécessaires pour obtenir une expression suffisante. Deux candidats ont été identifiés pour améliorer l’expression du transgène. La combinaison des approches ARNrn et insulateurs est prometteuse pour sécuriser le transfert de gène médié par piggyBac et pour maintenir l’expression du gène d’intérêt. / Advances in biotechnology have enabled the development of tools for gene transfer applicable to transgenesis, bioproduction and gene therapy. But, 3 major challenges must be met to ensure a secure system: the safety and effectiveness of the transfer. the targeted and controlled integration into the genome. and the level of transgene expression over time. In this aim, my thesis project was to validate solutions to improve the biosafety of the piggyBac transposon, which requires a plasmid carrying the gene of interest to be inserted in the genome, and a source of transposase which catalyzes the transgene integration. One approach of my thesis work is to deliver the source of piggyBac transposase as an mRNA molecule instead of DNA. This strategy aims to improve the stability of the integration and reduce the genotoxic effects by limiting the transposase in the cells. For the 1st time, the bioavailability of the transposase rnRNA and the optimal conditions for its use in human cells were determined to increase the biosafety of the transposon system. The 2nd objective ofmy project is to improve the expression of the transgene by adding insulators known to counteract the transgene silencing. This strategy reduces the number of integrations required ta get a sufficient expression of the transgene and thus, improve biosecurity. Two candidates have been identified to improve transgene expression. The combination of the mRNA and insulator strategies is promising to secure the piggyBac-mediated gene transfer and to maintain the expression of the gene of interest
167

Biomarkers in systemic scelrosis

Rice, Lisa 15 June 2016 (has links)
Systemic sclerosis (SSc; scleroderma) is a chronic multisystem autoimmune disease that includes prominent skin involvement in all patients and is characterized by fibrosis, inflammation, and microvascular injury of the skin and internal organs. Clinical trial design for patients with systemic sclerosis (SSc) has been confounded by the heterogeneity of disease progression and lack of objective outcome measures. This has hampered identification of therapies for patients who have frequently fatal fibrotic complications. Direct pulmonary complications are the leading cause of death in SSc. For clinical trials in patients with diffuse cutaneous SSc, identification of a pharmacodynamic biomarker associated with clinical improvement would allow for alternative approaches to trial design. Furthermore, identification of a diagnostic biomarker for SSc complicated by pulmonary arterial hypertension (SSc-PAH) would provide a reliable non-invasive method for diagnosis of pulmonary arterial hypertension. Through the combination of high throughput technologies and clinical information we have identified three preliminary biomarkers for SSc: i) Two pharmacodynamic biomarkers for diffuse skin disease (dcSSc), one in using mRNA from skin biopsies and one using proteomic profiles from sera; ii) a serum based proteomic classifier for the screening and diagnostic evaluation of pulmonary arterial hypertension in systemic sclerosis. We show these biomarkers can be applied to assess changes in skin disease in dSSc patients over time and with further development could be used to supplement or replace the physical examination assessment (Modified Rodnan Skin Score, MRSS) as an outcome measure in clinical trials for dcSSc patients. Routine use of these biomarkers in SSc clinical trial design could expand treatment options for a patient population that currently has few if any treatment options that slow progression of disease. Furthermore we identified a serum biomarker for the major SSc pulmonary complication, SSc-PAH. This diagnostic SSc-PAH biomarker has the potential to be used as a screening tool in order to reduce the need for unnecessary invasive diagnostic procedures. This non-invasive screening method could lead to early diagnosis thus improving patient survival and aid in clinical management of a complication for which there are several treatments but which is still frequently fatal. / 2018-06-15T00:00:00Z
168

The influenza A virus NS1 protein and viral mRNA nuclear export

Fernandes Pereira, Carina January 2018 (has links)
Influenza A virus (IAV) replication and transcription occur in the host cell nucleus; a feature which means both the viral genome (vRNA) and mRNA must be exported from the nucleus to the cytoplasm. The mechanism by which vRNA nuclear export is achieved has been well characterised, but how viral mRNAs are exported is poorly understood. The cellular NXF1-dependent mRNA export pathway has been shown to be involved in the export of some viral mRNAs, but how they are recruited to this pathway is unknown. Prior work from our laboratory showed that segment 7 mRNA was inefficiently exported to the cytoplasm in a sub-viral ‘minireplicon’ system, providing the first indication that there were viral requirements for IAV mRNA nuclear export. Further addition of individual viral polypeptides was tested and the effect on segment 7 mRNA export was analysed by fluorescent in situ hybridization (FISH) and confocal microscopy. This identified the NS1 protein as the viral factor required for efficient segment 7 nuclear export. Mutational studies on NS1 were carried out to unveil the mechanistic role of this protein in viral mRNA nuclear export, by plasmid transfection as well as in the context of recombinant viruses. These approaches indicated that both functional domains of NS1 were necessary to preserve the mRNA export function. Furthermore, these mutant proteins were used to examine the association between NS1 and the NXF1-dependent pathway in the context of mRNA nuclear export. Protein-protein and protein-RNA binding assays indicated that interactions between NXF1 and NS1, and NXF1 and segment 7 mRNA were necessary, but not sufficient to promote segment 7 viral mRNA export. Lastly, the role of NS1 protein in the nuclear export of viral mRNAs from other genome segments was studied. The intracellular localisation of most viral mRNAs was not affected by the absence of NS1 or the presence of an export-incompetent NS1 mutant protein. However, segment 4 mRNA exhibited a similar phenotype to segment 7 mRNA in showing a dependence on NS1 for efficient nuclear export. Overall, the results presented in this dissertation suggest that NS1 acts as an adaptor protein between the viral RNA synthesis machinery and cellular export pathway. This provides deeper insights for the characterization of a recently identified function of the IAV NS1 protein, of being required for the efficient nuclear export of mRNA from “late” kinetic class viral genes.
169

Sele??o de gen?tipos e an?lise da express?o g?nica diferencial induzida por Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) em Eucalyptus spp. / Genotypic selection and analysis of differential gene expression induced by Thaumastocoris peregrinus (Hemiptera:Thaumastocoridae) on Eucalyptus spp.

Ferreira, Marcele dos Santos 25 September 2013 (has links)
Submitted by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2015-01-07T10:54:29Z No. of bitstreams: 2 marcele_santos_ferreira.pdf: 1547534 bytes, checksum: a0861513c3025ada252d9e4fa8f0c494 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2015-01-07T10:55:14Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) marcele_santos_ferreira.pdf: 1547534 bytes, checksum: a0861513c3025ada252d9e4fa8f0c494 (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2015-01-07T10:55:10Z (GMT) No. of bitstreams: 2 marcele_santos_ferreira.pdf: 1547534 bytes, checksum: a0861513c3025ada252d9e4fa8f0c494 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2015-01-07T10:55:34Z (GMT) No. of bitstreams: 2 marcele_santos_ferreira.pdf: 1547534 bytes, checksum: a0861513c3025ada252d9e4fa8f0c494 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Made available in DSpace on 2015-01-07T10:55:34Z (GMT). No. of bitstreams: 2 marcele_santos_ferreira.pdf: 1547534 bytes, checksum: a0861513c3025ada252d9e4fa8f0c494 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Previous issue date: 2013 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Funda??o de Amparo ? Pesquisa do estado de Minas Gerais (FAPEMIG) / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / O g?nero Eucalyptus engloba centenas de esp?cies conhecidas e de elevado interesse comercial. Este g?nero florestal ? altamente respons?vel pelo abastecimento da cadeia produtiva da madeira no Brasil. Diversos aspectos podem afetar negativamente a produtividade dos plantios, como, por exemplo, a ocorr?ncia de pragas e doen?as. O percevejo bronzeado Carpintero e Dellap?, 2006 (Hemiptera: Thaumastocoridae) ? uma praga ex?tica, nova no Brasil. Uma estrat?gia para diminuir os efeitos negativos dos insetos-praga ? selecionar materiais gen?ticos resistentes. O isolamento e a identifica??o de genes envolvidos no processo de resist?ncia podem ser usados na obten??o de indiv?duos com caracter?sticas desej?veis. O presente trabalho teve por objetivos a avalia??o de materiais gen?ticos de Eucalyptus spp. quanto ? inj?ria ocasionada pelo percevejo bronzeado e a constru??o, a partir de materiais contrastantes, de bibliotecas subtrativas de cDNA. A escolha dos gen?tipos baseou-se em metodologias distintas, conduzidas em laborat?rio, sala climatizada e em casa de vegeta??o. Foram estudados 27 clones h?bridos. Os gen?tipos C03 e C17 foram escolhidos e, juntamente com mudas de E. camaldulensis, submetidos ao ataque de T. peregrinus. A partir das amostras de RNA mensageiro foi poss?vel construir duas bibliotecas subtrativas: uma com genes diferencialmente expressos entre o clone C03 e o E. camaldulensis e outra a partir do clone C17 e o E. camaldulensis. / Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Ci?ncia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2013. / ABSTRACT The genus Eucalyptus encompasses hundreds of known species with high commercial interest. This forest genus is largely responsible for the supply of the wood production chain in Brazil. Several aspects can negatively affect the plantation productivity, for example the occurrence of pests and diseases. The bronze bug Carpintero e Dellap?, 2006 (Hemiptera:Thaumastocoridae) is a new exotic pest in Brazil. A strategy to reduce the negative effects of the insect pests is to select genetic material with resistance. The isolation and identification of resistance genes can be used in order to obtain individuals with desirable characteristics. The present study aimed to evaluate genetic materials of Eucalyptus spp. under the attack of Thaumastocoris peregrinus and make cDNA libraries from contrasting materials. The choice of genotypes relied on different methodologies conducted in laboratory, climate-controlled room and greenhouse. There were studied 27 hybrid clones. The genotypes C03 and C17, were selected along with E. camaldulensis seedlings and subjected to the attack of T. peregrinus. Two genomic subtractive libraries were made from the total RNA samples, one containing the differentially expressed genes between C03 and E. camaldulensis, and another from C17 and E. camaldulensis.
170

Auto-Regulation of the MBNL1 Pre-mRNA

Gates, Devika P., 1984- 06 1900 (has links)
xiv, 59 p. : ill. (some col.) / Muscleblind-like 1 (MBNL1) is a splicing factor whose improper cellular localization is a central component of myotonic dystrophy (DM). In DM, the lack of properly localized MBNL1 leads to mis-splicing of many pre-mRNAs. The mechanism by which MBNL1 regulates it pre-mRNA targets is not well understood. In order to determine the mechanism by which MBNL1 regulates alternative splicing, a consensus RNA binding motif for Mbl (the <italic>Drosophila</italic> ortholog of MBNL1) and MBNL1 were determined using SELEX (Systematic Evolution of Ligands by Exponential Enrichment). These consensus motifs allowed for the identification of high affinity endogenous sites within pre-mRNAs that are regulated by MBNL1. <italic>In vitro</italic> binding studies showed that MBNL1 bound to RNAs that contained the consensus motif surrounded by pyrimidines. Some of these sites were identified upstream of exon 5 within the <italic>MBNL1</italic> pre-mRNA, and we have shown that MBNL1 auto-regulates the exclusion of exon 5 in HeLa cells. The region of the <italic>MBNL1</italic> gene that includes exon 5 and flanking intronic sequence is highly conserved in vertebrate genomes. The 3' end of intron 4 is non-canonical in that it contains an AAG 3' splice site and a predicted branchpoint that is 141 nucleotides from the 3' splice site. Using a mini-gene that includes exon 4, intron 4, exon 5, intron 5 and exon 6 of <italic>MBNL1</italic>, we show that MBNL1 regulates inclusion of exon 5. Mapping of the intron 4 branchpoint confirms that branching occurs primarily at the predicted distant branchpoint. Structure probing and footprinting reveal that the highly conserved region between the branchpoint and the 3' splice site is primarily unstructured, and MBNL1 binds within this region of the pre-mRNA, which we have termed the MBNL1 response element. Deletion of the response element eliminates MBNL1 splicing regulation and leads to complete inclusion of exon 5, which is consistent with the suppressive effect of MBNL1 on splicing. This dissertation includes previously published co-authored material as well as my recent co-authored material that has been submitted for publication. / Committee in charge: Kenneth Prehoda, Chair; J. Andrew Berglund, Advisor; Victoria J. de Rose, Member; Alice Barkan, Member; Karen Guillemin, Outside Member

Page generated in 0.0703 seconds