891 |
Détermination des incertitudes de mesures sur machines à mesurer tridimensionnelles : application aux engrenagesHennebelle, François 05 December 2007 (has links) (PDF)
L'accréditation des Machines à Mesurer Tridimensionnelles (MMT) est envisageable pour les engrenages à condition d'évaluer les incertitudes de mesures, les mesurandes étant parfaitement définis par la normalisation. Nos travaux s'appuient principalement sur la méthode de Monte Carlo et sur des techniques de permutations linéaires ou circulaires pour séparer les défauts et chiffrer les incertitudes de mesures associées, conformément au Guide pour l'expression des incertitudes de mesures (GUM). L'analyse de l'effet de la géométrie de la MMT sur la mesure d'une pièce de forme circulaire ou d'une roue dentée montre qu'il est impossible de caractériser complètement la géométrie de la MMT à partir d'une pièce supposée parfaite. Cependant, nous avons mis en place un concept de « défauts équivalents » propre à la géométrie de la machine et à la définition théorique de la pièce étudiée. Les systèmes de palpage utilisés ont été évalués afin de corriger les défauts systématiques identifiables et chiffrer les incertitudes associées. En prenant l'exemple d'un engrenage cylindrique droit, trois approches sont comparées : l'analyse des caractéristiques métrologiques de la MMT, la méthode de permutation et celle de comparaison. La méthode proposée permet de diminuer les incertitudes de mesures et peut être généralisée pour différentes applications. Nous proposons comme exemple l'étude des taux de pénétration et des volumes d'usure sur des explants de prothèses totales de hanches.
|
892 |
Modélisation dynamique par réseaux de neurones et machines à vecteurs supports: contribution à la maîtrise des émissions polluantes de véhicules automobiles.Lucea, Marc 22 September 2006 (has links) (PDF)
La complexité croissante des systèmes employés dans l'industrie automobile, en termes de fonctions réalisées et de méthodes de mise en œuvre, mais aussi en terme de norme d'homologation, amène à envisager des outils toujours plus innovants lors de la conception d'un véhicule. On observe d'ailleurs depuis quelques années une forte augmentation du nombre de brevets déposés, en particulier dans le domaine des systèmes électroniques, dont l'importance ne cesse de croître au sein d'un véhicule automobile moderne. Cette complexité croissante des fonctions réalisées requiert une précision de description accrue pour les dispositifs impliqués, notamment pour les systèmes complexes où une approche analytique est difficilement envisageable. Aux impératifs de précision de la description, qui imposent souvent de prendre en considération les non-linéarités des processus, s'ajoute donc la complexité d'analyse des phénomènes physiques à l'origine des observations que l'on souhaite modéliser. Les développements qu'ont connus ces dernières années les techniques de modélisation non linéaires par apprentissage (notamment les réseaux de neurones formels et les machines à vecteurs supports), alliés à la croissance de la capacité des ordinateurs et des calculateurs embarqués dans les véhicules automobiles, justifient donc l'intérêt porté par Renault à ces outils. C'est dans cette optique qu'a été envisagée une étude portant sur les méthodes de modélisation non linéaire par apprentissage, dont l'objectif était d'en tester les secteurs d'applications possibles dans le contexte automobile, et d'en évaluer les difficultés de mise en œuvre ainsi que les gains attendus. Cette étude a fait l'objet d'une collaboration, sous forme d'un contrat de thèse CIFRE, avec le Laboratoire d'Electronique de l'Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), dirigé par le Professeur Gérard Dreyfus. De manière générale, les techniques de modélisation par apprentissage permettent d'aborder la modélisation de phénomènes physiques dont la description est ardue, élargissant ainsi le champ des possibles en matière de modélisation, mais également de s'affranchir d'une description physique détaillée pour des processus connus, réduisant ainsi le temps de développement d'un modèle particulier. En contrepartie, l'élaboration de tels modèles par apprentissage requiert la réalisation de mesures sur ledit processus, ce qui implique des coûts qui sont parfois loin d'être négligeables. Notre objectif a donc été d'identifier certains problèmes correspondant à la première approche, c'est-à-dire pour lesquels la réalisation de modèles de connaissance est soit inenvisageable soit particulièrement ardue. Le premier chapitre de ce mémoire s'attache à rappeler les concepts de base relatifs à la modélisation de processus par apprentissage. Nous y introduirons les notions essentielles que nous serons amenés à employer par la suite. Dans le deuxième chapitre, nous décrivons les principaux outils d'optimisation nécessaires à l'élaboration de modèles par apprentissage. Le troisième chapitre regroupe l'ensemble des travaux menés, au cours de cette thèse, sur le thème des réseaux de neurones. Après avoir rappelé la méthodologie d'élaboration de modèles neuronaux, en particulier dans le cas récurrent, nous présentons les résultats obtenus sur deux applications industrielles: l'estimation de la température en un point particulier de la ligne d'échappement, et l'estimation des émissions de différents polluants en sortie d'échappement. Ces deux applications participent à la maîtrise des émissions polluantes, soit durant l'utilisation habituelle d'un véhicule, car la connaissance de cette température est indispensable à la mise en œuvre des stratégies de dépollution actives, soit au stade de la mise au point du moteur, qui sera facilitée par l'utilisation d'un modèle de prédiction des débits de polluants en fonction des réglages du moteur. Nous décrivons également un système de commande optimale en boucle ouverte, associé à un modèle neuronal, et destiné à réduire les variations rapides de la sortie d'un processus: ce système est susceptible d'être utilisé pour contrôler les à-coups de couple d'un véhicule, consécutifs à une variation rapide de l'enfoncement de la pédale d'accélérateur. Une méthode de calcul exact de la matrice Hessienne, dans le cas de modèles décrits par des équations récurrentes, est alors introduite pour permettre l'utilisation de ce système de commande dans le cas de processus dynamiques. Dans le quatrième chapitre, nous nous intéressons aux méthodes de modélisation par noyaux, dont font partie les machines à vecteurs supports, et tentons de les adapter à la modélisation de processus dynamiques, d'abord par un traitement analytique (pour l'une particulière de ces méthodes), avant de proposer un approche itérative du problème d'apprentissage, inspirée de l'algorithme d'apprentissage semi dirigé utilisé pour les réseaux de neurones récurrents.
|
893 |
Produit Synchronisé pour Quelques Classes de Graphes InfinisPayet, Etienne 10 February 2000 (has links) (PDF)
Cette thèse a pour cadre la spécification et la vérification de systèmes informatiques distribués, concurrents ou réactifs au moyen de graphes infinis associés à des spécifications de Thue et à certaines machines. Nous montrons que la classe des graphes des spécifications de Thue est fermée par produit synchronisé. Nous établissons aussi ce fait pour la classe des graphes des machines de Turing et pour certaines de ses sous-classes. Nous nous intéressons également à la conservation par produit synchronisé de la décidabilité de la théorie du premier ordre de graphes infinis. Nous montrons que le produit synchronisé de graphes de machines à pile restreint à sa partie accessible depuis un sommet donné à une théorie du premier ordre qui n'est pas décidable. Cependant, le produit synchronisé de graphes sans racine distinguée et dont la théorie du premier oordre est décidable a une théorie du premier ordre qui est décidable. Enfin nous mettons en évidence des liens qui unissent les graphes des machines de Turing à ceux des spécifications de Thue.
|
894 |
Nouveaux Algorithmes pour l'Apprentissage de Machines à Vecteurs Supports sur de Grandes Masses de DonnéesBordes, Antoine 09 February 2010 (has links) (PDF)
Internet ainsi que tous les moyens numériques modernes disponibles pour communiquer, s'informer ou se divertir génèrent des données en quantités de plus en plus importantes. Dans des domaines aussi variés que la recherche d'information, la bio-informatique, la linguistique computationnelle ou la sécurité numérique, des méthodes automatiques capables d'organiser, classifier, ou transformer des téraoctets de données apportent une aide précieuse. L'apprentissage artificiel traite de la conception d'algorithmes qui permettent d'entraîner de tels outils à l'aide d'exemples d'apprentissage. Utiliser certaines de ces méthodes pour automatiser le traitement de problèmes complexes, en particulier quand les quantités de données en jeu sont insurmontables pour des opérateurs humains, paraît inévitable. Malheureusement, la plupart des algorithmes d'apprentissage actuels, bien qu'efficaces sur de petites bases de données, présentent une complexité importante qui les rend inutilisables sur de trop grandes masses de données. Ainsi, il existe un besoin certain dans la communauté de l'apprentissage artificiel pour des méthodes capables d'être entraînées sur des ensembles d'apprentissage de grande échelle, et pouvant ainsi gérer les quantités colossales d'informations générées quotidiennement. Nous développons ces enjeux et défis dans le Chapitre 1. Dans ce manuscrit, nous proposons des solutions pour réduire le temps d'entraînement et les besoins en mémoire d'algorithmes d'apprentissage sans pour autant dégrader leur précision. Nous nous intéressons en particulier aux Machines à Vecteurs Supports (SVMs), des méthodes populaires utilisées en général pour des tâches de classification automatique mais qui peuvent être adaptées à d'autres applications. Nous décrivons les SVMs en détail dans le Chapitre 2. Ensuite, dans le Chapitre 3, nous étudions le processus d'apprentissage par descente de gradient stochastique pour les SVMs linéaires. Cela nous amène à définir et étudier le nouvel algorithme, SGD-QN. Après cela, nous introduisons une nouvelle procédure d'apprentissage : le principe du “Process/Reprocess”. Nous déclinons alors trois algorithmes qui l'utilisent. Le Huller et LaSVM sont présentés dans le Chapitre 4. Ils servent à apprendre des SVMs destinés à traiter des problèmes de classification binaire (décision entre deux classes). Pour la tˆache plus complexe de prédiction de sorties structurées, nous modifions par la suite en profondeur l'algorithme LaSVM, ce qui conduit à l'algorithme LaRank présenté dans le Chapitre 5. Notre dernière contribution concerne le problème récent de l'apprentissage avec une supervision ambigüe pour lequel nous proposons un nouveau cadre théorique (et un algorithme associé) dans le Chapitre 6. Nous l'appliquons alors au problème de l'étiquetage sémantique du langage naturel. Tous les algorithmes introduits dans cette thèse atteignent les performances de l'état-de-l'art, en particulier en ce qui concerne les vitesses d'entraînement. La plupart d'entre eux ont été publiés dans des journaux ou actes de conférences internationaux. Des implantations efficaces de chaque méthode ont également été rendues disponibles. Dans la mesure du possible, nous décrivons nos nouveaux algorithmes de la manière la plus générale possible afin de faciliter leur application à des tâches nouvelles. Nous esquissons certaines d'entre elles dans le Chapitre 7.
|
895 |
Support Vector Machines for Classification applied to Facial Expression Analysis and Remote Sensing / Support Vector Machines for Classification applied to Facial Expression Analysis and Remote SensingJottrand, Matthieu January 2005 (has links)
<p>The subject of this thesis is the application of Support Vector Machines on two totally different applications, facial expressions recognition and remote sensing.</p><p>The basic idea of kernel algorithms is to transpose input data in a higher dimensional space, the feature space, in which linear operations on the data can be processed more easily. These operations in the feature space can be expressed in terms of input data thanks to the kernel functions. Support Vector Machines is a classifier using this kernel method by computing, in the feature space and on basis of examples of the different classes, hyperplanes that separate the classes. The hyperplanes in the feature space correspond to non linear surfaces in the input space.</p><p>Concerning facial expressions, the aim is to train and test a classifier able to recognise, on basis of some pictures of faces, which emotion (among these six ones: anger, disgust, fear, joy, sad, and surprise) that is expressed by the person in the picture. In this application, each picture has to be seen has a point in an N-dimensional space where N is the number of pixels in the image.</p><p>The second application is the detection of camouflage nets hidden in vegetation using a hyperspectral image taken by an aircraft. In this case the classification is computed for each pixel, represented by a vector whose elements are the different frequency bands of this pixel.</p>
|
896 |
An algorithm for segment durations in a reading machine contextJanuary 1971 (has links)
[by] Thomas P. Barnwell III. / Also issued as a Ph.D. thesis in the Dept. of Electrical Engineering, 1970. / Bibliography: p.114-115. / Contract DA 28-043-AMC-02536(E).
|
897 |
An Equivalence Between Sparse Approximation and Support Vector MachinesGirosi, Federico 01 May 1997 (has links)
In the first part of this paper we show a similarity between the principle of Structural Risk Minimization Principle (SRM) (Vapnik, 1982) and the idea of Sparse Approximation, as defined in (Chen, Donoho and Saunders, 1995) and Olshausen and Field (1996). Then we focus on two specific (approximate) implementations of SRM and Sparse Approximation, which have been used to solve the problem of function approximation. For SRM we consider the Support Vector Machine technique proposed by V. Vapnik and his team at AT&T Bell Labs, and for Sparse Approximation we consider a modification of the Basis Pursuit De-Noising algorithm proposed by Chen, Donoho and Saunders (1995). We show that, under certain conditions, these two techniques are equivalent: they give the same solution and they require the solution of the same quadratic programming problem.
|
898 |
A Note on Support Vector Machines DegeneracyRifkin, Ryan, Pontil, Massimiliano, Verri, Alessandro 11 August 1999 (has links)
When training Support Vector Machines (SVMs) over non-separable data sets, one sets the threshold $b$ using any dual cost coefficient that is strictly between the bounds of $0$ and $C$. We show that there exist SVM training problems with dual optimal solutions with all coefficients at bounds, but that all such problems are degenerate in the sense that the "optimal separating hyperplane" is given by ${f w} = {f 0}$, and the resulting (degenerate) SVM will classify all future points identically (to the class that supplies more training data). We also derive necessary and sufficient conditions on the input data for this to occur. Finally, we show that an SVM training problem can always be made degenerate by the addition of a single data point belonging to a certain unboundedspolyhedron, which we characterize in terms of its extreme points and rays.
|
899 |
Modeling and Analysis of Two-Part Type Manufacturing SystemsJang, Young Jae, Gershwin, Stanley B. 01 1900 (has links)
This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided. / Singapore-MIT Alliance (SMA)
|
900 |
Geometric Tolerancing of Cylindricity Utilizing Support Vector RegressionLee, Keun Joo 01 January 2009 (has links)
In the age where quick turn around time and high speed manufacturing methods are becoming more important, quality assurance is a consistent bottleneck in production. With the development of cheap and fast computer hardware, it has become viable to use machine vision for the collection of data points from a machined part. The generation of these large sample points have necessitated a need for a comprehensive algorithm that will be able to provide accurate results while being computationally efficient. Current established methods are least-squares (LSQ) and non-linear programming (NLP). The LSQ method is often deemed too inaccurate and is prone to providing bad results, while the NLP method is computationally taxing. A novel method of using support vector regression (SVR) to solve the NP-hard problem of cylindricity of machined parts is proposed. This method was evaluated against LSQ and NLP in both accuracy and CPU processing time. An open-source, user-modifiable programming package was developed to test the model. Analysis of test results show the novel SVR algorithm to be a viable alternative in exploring different methods of cylindricity in real-world manufacturing.
|
Page generated in 0.0593 seconds