• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 15
  • 12
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 23
  • 21
  • 17
  • 17
  • 17
  • 15
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Příprava a charakterizace vysoce hydrofobních povlaků na hořčíkové slitině AZ91 / Preparation and characterization of highly hydrophobic coatings on AZ 91 magnesium alloy

Šomanová, Pavlína January 2021 (has links)
Magnesium and its alloys have many interesting properties and thanks to them it can be used in many applications (transport industry, medicine etc.). Disadvantage of these materials is their high corrosion rate. For this reason, there is an effort to achieve high corrosion resistance through different modifications of magnesium and its alloys. In recent years the superhydrophobization of the surface seem to be an attractive solution for this question. This type surface modification minimalize contact between the surface and water. In this diploma thesis the superhydrophobic surface was created on the magnesium alloy AZ91. The first step included pretreatment of AZ91 surface by etching in solution of SnCl2 or ZnCl2. Next step was superhydrophobization in the ethanolic solution of stearic acid. The surface morphology and elemental analysis of the superhydrophobic coating were explored by use of scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The adhesion properties of the coating on the AZ91 were analysed by means of scratching test. Contact and sliding angles were measured for superhydrophobic coatings. Electrochemical characterization of the coatings was determined using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS). Finally, the analysis of composition and the functional groups was made using Fourier-transform infrared spectroscopy (FTIR) and the phase composition analysis was performed using X-ray diffraction (XRD). The results show that the coatings prepared by etching did not lead to good corrosion properties, even though the value of contact angle was about 150 °. The reduction of corrosion resistance could be caused by not obtaining required surface morphology or insufficient binding of stearic acid in the form of stearate to the sample surface.
52

Únavové vlastnosti hořčíkové slitiny AZ61 / Fatigue properties of AZ61 magnesium alloy

Provazníková, Andrea Unknown Date (has links)
This master’s thesis is dealing with low-fatigue behavior of magnesium alloy AZ61, prepared via squeeze casting method. The main aim of this work was to obtain the basic mechanical properties as well as the low cycle fatigue data. Additional metallographical evaluation of microstructure and fractographical analysis after fatigue tests was made.
53

In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing

Ho, Yee Hsien 08 1900 (has links)
Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the pressent efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount (~5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure,the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX,XRD ,and XPS. The detailed observations will be discussed during presentation.
54

Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding

Poudel, Amir 12 1900 (has links)
This research demonstrates the use of friction stir welding (FSW) to join dissimilar (Al-Mg) metal alloys. The main challenges in joining different, dissimilar metal alloys is the formation of brittle intermetallic compounds (IMCs) in the stir zone affecting mechanical properties of joint significantly. In this present study, FSW joining process is used to join aluminum alloy AA2139 and magnesium alloy WE43. The 9.5 mm thick plates of AA2139 and WE43 were friction stir butt welded. Different processing parameters were used to optimize processing parameters. Also, various weldings showed a crack at interface due to formation of IMCs caused by liquation during FSW. A good strength sound weld was obtained using processing parameter of 1200 rev/min rotational speed; 76.2 mm/min traverse speed; 1.5 degree tilt and 0.13 mm offsets towards aluminum. The crack faded away as the tool was offset towards advancing side aluminum. Mostly, the research was focused on developing high strength joint through microstructural control to reduce IMCs thickness in Al-Mg dissimilar weld joint with optimized processing parameter and appropriate tool offset.
55

Únavové vlastnosti ultrajemnozrnných Mg slitin / Fatigue properties of ultrafine grained Mg alloys

Hlavnička, Radek January 2014 (has links)
This thesis deals with the influence of grain refinement by ECAP on fatigue properties of magnesium alloy AZ 91. Tensile and fatigue tests were made on the as-cast state samples and samples after ECAP process. Metallographic analysis of the microstructure and fractographic analysis of the fracture surfaces was performed.
56

Modélisation et optimisation des performances acoustiques d'un tablier d'automobile en alliage de magnésium

Sy, Djibril January 2010 (has links)
Résumé : Ce projet fait partie du projet MFERD (Magnésium Front End Research and Development) qui vise à développer les technologies permettant de rendre les alliages de Magnésium (Mg) comme un principal matériau structural pour les voitures (aujourd'hui essentiellement constituées d'acier quatre fois plus lourd que le Mg) afin d'en réduire leur masse pour des raisons environnementales et sécuritaires. Dans ce travail de maîtrise nous avons regardé la partie acoustique dans le cas d'un tablier (structure métallique derrière le tableau de bord) en magnésium. En effet, le confort acoustique à l'intérieur des voitures est devenu un argument de marketing d'une grande importance. Le tablier en séparant le compartiment moteur, source de bruit, de l'habitacle, joue un rôle important dans l'isolation acoustique de l'intérieur de la voiture. Ainsi le passage d'un tablier en acier à un tablier en Mg ne doit pas entraîner une baisse de performance. Dans ce travail, nous avons d'abord effectué une revue de la littérature sur les types de traitements acoustiques utilisés dans l'industrie automobile ainsi que des différentes techniques de leur modélisation. Nous avons ensuite comparé les performances acoustiques du tablier en Mg sur lequel on a appliqué des traitements classiques (à une couche, deux couches et trois couches) à celles des tabliers en acier et en aluminium et ce, à masse surfacique, raideur et/ou fréquences de résonnances égales. Finalement nous avons optimisé différents concepts de traitements acoustiques innovants appliqués sur le tablier en Mg en vue d'avoir des performances acoustiques semblables ou supérieures à celles du tablier en acier classique. L'optimisation s'est faite à partir d'un modèle SEA (Statitical Energy Analysis) couplé à un code d'optimisation basé sur un algorithme génétique||Abstract : This work is part of the MFERD (Magnesium Front End Research and Development) project which goal is to develop enabling technologies for the use of magnesium alloys as a principal structural material for cars (mainly made in steel which is four time heavier than magnesium) in order to reduce their mass for both, environmental and security concerns. In this work we have focused on the acoustic part, in the case of a magnesium alloy dash panel. The dash board, by separating the engine compartment from the interior cabin, plays a critical role in the insulation of the car interior. Since the acoustic comfort inside the car has become a marketing argument of great importance, the passage from steel to magnesium dash panel should not deteriorate acoustic performances. In this work, we first conducted a literature review on the types of acoustic treatments used in the automotive industry as well as various techniques of their modeling. We then compared the acoustic performances of a Mg dash with attached traditional acoustic treatments (single-layer, two layers and three layers) to those of a steel and aluminum dash panels with the same mass density, stiffness and/or frequency of resonances. Finally, we optimized different concepts of innovative sound packages applied on the Mg dash panel to achieve a noise performance similar or superior to those of a conventional steel dash. The optimization was done using a SEA (Statitical Energy Analysis) model, coupled with an optimization code based on a genetic algorithm.
57

Élaboration de composites base magnésium pour des applications d’allègement de structures et de protection balistique dans le secteur des transports / Development of magnesium based composites for structure lightweighting and balistic protection in the transport field

Mondet, Mathieu 11 April 2017 (has links)
Le sujet de thèse s’inscrit dans une problématique d’allègement de structures des moyens de transport civils et militaires. Actuellement, les pièces de structures métalliques de ces moyens sont principalement composées d’alliages d’aluminium et d’aciers. Avec une densité inférieure et des propriétés mécaniques spécifiques similaires à ces métaux, l’alliage de magnésium AZ91 représente une solution de substitution prometteuse. En dépit de son durcissement structural par précipitation, ses propriétés mécaniques relativement faibles limitent son emploi actuel comme matériau de structure. Une amélioration de ces propriétés pourrait être permise au travers d’un affinement de la microstructure et d’un renforcement par l’ajout de particules céramiques. La métallurgie des poudres, en particulier le procédé Spark Plasma Sintering (SPS), permettrait d’allier ces deux voies d’amélioration en produisant un composite à fine microstructure avec un renforcement particulaire contrôlé. Cette thèse a pour objectifs le développement par SPS d’alliages AZ91, l’optimisation de leurs propriétés mécaniques par un contrôle de leur microstructure et l’étude de leur renforcement potentiel par l’ajout de particules de SiC. Le contrôle microstructural a été réalisé par l’intermédiaire des paramètres du procédé SPS et a porté principalement sur la densification de l’alliage, sa taille de grains et sa teneur en précipités. La caractérisation mécanique des matériaux produits a été composée d’essais de dureté, d’essais de compression en conditions quasi-statiques et dynamiques, ainsi que d’essais de traction. Les essais de traction ont été réalisés à l’issue d’un changement d’échelle de production, passant de pièces cylindriques Ø30 mm à des pièces Ø80 mm. Outre la réalisation d’essais de traction, le changement d’échelle a permis d’étudier la reproductibilité des conditions de production. Alors que l’optimisation mécanique des matériaux frittés a porté sur leurs propriétés en compression, les essais de traction ont permis d’évaluer leur cohésion et leur ductilité. Afin de montrer les améliorations permises par l’affinement microstructural et le renforcement particulaire, les matériaux élaborés par SPS ont été comparés à des alliages AZ91 produits par fonderie / The present PhD thesis falls within a structure lightweighting issue in the transport field for civil and military applications. Today, the metallic structural parts in transports are mainly composed of aluminum alloys and steels. With an inferior density and a similar specific mechanical strength to these metals, the AZ91 alloy appears to be a promising alternative. Despite its precipitation strengthening, its relative low mechanical properties limit its current use as engineering material. An improvement could be reached via microstructure refinement and ceramic particle strengthening. Powder metallurgy, involving Spark Plasma Sintering (SPS), will be used as an effective way to improve the AZ91 properties using these two approaches. AZ91 alloys were produced by SPS and reinforced by SiC particles. Their mechanical properties were optimized by microstructure control. This control was carried out by adjusting the SPS processing parameters to optimize the alloy densification, its grain size and its precipitate content. The mechanical properties of the materials were evaluated via hardness testing, compression tests in quasi-static and dynamic conditions as well as quasi-static tensile tests. The tensile tests were carried out after an up-scaling of the production process from Ø30 mm cylindrical pieces to Ø80 mm pieces. In addition to the tensile tests, the up-scaling step allowed to study the repeatability of the process conditions. While the mechanical optimization of the SPS processed materials was paid on their compressive properties, their tensile properties gave information on their cohesion and ductility. In order to highlight the mechanical improvement got by microstructure refinement and particle strengthening, the SPS processed materials were compared with cast AZ91 alloys
58

Material interactions in a novel Refill Friction Stir Spot Welding approach to joining Al-Al and Al-Mg automotive sheets

Al-Zubaidy, Basem January 2017 (has links)
Refill Friction Stir Spot Welding (RFSSW) is a new solid-state joining technology, which is suitable for joining similar and dissimilar overlap sheets connections, particularly in aluminium and magnesium alloys. This welding method is expected to have wide applications in joining of body parts in the automotive industry. In the present study, RFSSW has been used to join 1.0 mm gauge sheets of two material combinations: similar AA6111-T4 automotive aluminium alloy joints and a dissimilar aluminium AA6111-T4 to magnesium AZ31-H24 alloy combinations. The performance of the joints was investigated in terms of the effect of the welding parameters (including tool rotation rate, sleeve plunge depth, and welding time etc.) to improve current understanding and allow optimisation of the process for short welding-cycles when joining similar and dissimilar light alloys. The results of the investigations on similar AA6111 welds showed the ability to use a wide window of process parameters that resulted in joints with a successfully refilled keyhole and flat weld surface, even when using a welding time as short as 0.5 s. The joints in the as-welded condition showed strengths as high as 4.2 kN, when using welding parameters of 1500 rpm, 1.0 mm with a range of welding times from 0.55 to 2.0 s. All joints showed a nugget pull-out failure mode when using a sleeve plunge depth of 0.8 mm or more, as a result of increasing the joint area. The strength of the joints further improved and reached peak loads of 5.15 and 6.43 kN after natural and artificial ageing, respectively, for welds produced using optimised welding parameters of a 2500 rpm tool rotation rate, a 1.5 s welding time and a 1.0 mm plunge. This improvement in strength resulted from the improvement in the local mechanical properties in the HAZ and other regions, which results from a minimal HAZ due to the rapid weld cycle and the re-precipitation of GPZs and clustering on natural ageing, or β on artificial ageing. A modification to the RFSSW process was developed in this project to solve the problems faced when dissimilar welding Mg to Al. This modified process involved adding a final brief pin plunge stage to consolidate refill defects and it was successful in producing nearly defect-free joints with improved mechanical properties, using a wide range of the process parameters. The average peak load of the joints increased with increasing tool rotation rate, to reach a maximum value at 2500 rpm due to eliminating the weld defects by increasing the material plasticity. However, increasing the tool rotation rate further to 2800 rpm led to a decrease in the average peak failure load due to eutectic melting at the weld interface. The optimum welding condition was thus found to be: 2500 rpm, 1.0 s, and 1.0 mm, which gave an average peak failure load of 2.4 kN and average fracture energy of 1.3 kN.mm. These values represent an improvement of about 10 % and 27 %, respectively, compared to welds produced with the conventional RFSSW process, and about 112 % and 78 % of the Mg-Mg similar joints produced using the same welding conditions. A FE model developed in this project was successful in increasing understanding of the behaviour of the RFSSW joints when subjected to lap tensile-shear loading. The stress and strain distribution in the modelled samples showed that the highest concentration occurring in the region of the confluence of the SZ with the two sheets. With increasing extension, these regions of highest stress and strain propagated to the outer surfaces of the two sheets and then annularly around the weld nugget. This annular ring of high strain concentration agreed well with the failure path and results in the full plug pull-out fracture mode shown by the experimentally tested samples. The predicted force-extension curves showed high agreement with the experimental results, especially when including the effect of the hook defect and correction of compliance in the experimental results.
59

INFLUENCE OF TEMPERATURE AND STRESS RATIO ON FATIGUE AND FRACTURE RESPONSE OF HPDC AM60B MAGNESIUM ALLOY

Hossain, Md. Nur 19 August 2010 (has links)
The mechanical behavior of a high pressure die cast AM60B Mg alloy is studied. Constant load amplitude fatigue tests were conducted at room, elevated and cold temperatures, with a stress ratio of R=0.1, and frequency of 30 Hz. The objective was to identify the possible effects of temperature on fatigue life cycle. In addition, fatigue crack propagation tests were conducted to ascertain the fatigue response of the alloy and determine its fatigue crack growth rate as a function of the applied stress ratio, experimentally, analytically and computationally, using Walker’s model. The results demonstrated that temperature had a significant influence on the fatigue life, and that the life increased at cold temperature but decreased at elevated temperature as compared to that evaluated at room temperature. In this study, the limit for applicability of LEFM was established for AM60B magnesium alloy. In addition, fatigue crack propagation test results were used to evaluate the coefficients of the Paris model.
60

Rascherstarrte nanokristalline Magnesiumlegierungen für die Wasserstoffspeicherung

Kalinichenka, Siarhei 06 December 2011 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit sind die Struktur und die Wasserstoffsorptionseigenschaften neuer nanokristalliner, hydridbildender magnesiumbasierter Legierungen, die mittels Rascherstarrung (Melt-Spinning Verfahren) hergestellt wurden, untersucht worden. Der Schwerpunkt der Arbeit bestand in der Erforschung der Vorgänge während der Aktivierung und der zyklischen Hydrierung/Dehydrierung der rascherstarrten Mg-Legierungen. Zusätzlich wurde das Gefüge, das sich nach der Kristallisation, Aktivierung bzw. Hydrierung einstellt, seine Erhaltung und Auswirkung auf das H2-Speicherverhalten (Struktur-Eigenschafts-Beziehungen) untersucht. Die für die Verbesserung der Kinetik des H2-Speicherverhaltens angestrebte Nanostruktur konnte nach der Hydrierung der rascherstarrten Legierungen erreicht werden. Die REM-, TEM- sowie EFTEM (EELS)-Untersuchungen zeigten, dass ein Y-Zusatz zu Mg-basierten Legierungen zu einer sehr feinen (ca. 50 nm) und homogenen Verteilung von Y-Hydriden im Gefüge der rascherstarrten Bänder führt. Mg2Ni-Hydride bilden dagegen größere Körner im Größenbereich von 2-3 µm. Bei den Cu-haltigen Legierungen wurde eine Koexistenz von Mg2NiH4 und MgCu2 in direkter Nachbarschaft nachgewiesen. Detaillierte Untersuchungen der Wasserstoffabsorption haben gezeigt, dass die Chemisorption während des linearen Anfangsbereiches des Hydrierungsverlaufes geschwindigkeitsbestimmend ist. Nach dem linearen Hydrierungsverlauf ist die Hydrierungskinetik von der Wasserstoffdiffusion durch eine geschlossene Hydridschicht beeinflusst. Mit dem breiten Spektrum der Untersuchungen (REM, EELS, TEM, HP-TGA, DSC, in situ-Synchrotron-XRD) als auch durch gezielte Variation der Zusammensetzungen wurden neue und grundlegende Erkenntnisse zum H2-Speicherverhalten der rascherstarrten Mg-basierten Legierungssysteme gewonnen. Besondere Beachtung verdient die Mg90Ni8Y1,6SE0,4-Legierung. Durch die Möglichkeit einer einfachen Herstellung, ihre schnelle Reaktionskinetik, ihren hohen Wasserstoffgehalt (bis zu 5,6 Gew.%) und ihre gute Zyklenstabilität eignet sich diese Legierung zur sicheren, volumeneffizienten sowie leichtgewichtigen Speicherung von Wasserstoff. Damit kann Wasserstoff gespeichert, transportiert und als CO2-freier Sekundärenergieträger in stationären und mobilen Anwendungen eingesetzt werden.

Page generated in 0.0426 seconds