• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 12
  • 10
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 21
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Kicked-Rotor under the Aharonov-Bohm Effect

Xie, Bor-Dun 01 August 2012 (has links)
The kicked-rotor under the Aharonov-Bohm effect are studyed by using the floquet map, the energy change with different magnetic flux have also being discussed. Finally, the kicked-rotor under the time-dependent magnetic flux are discussed.
22

Single fluxoid thermal smearing and the second peak in YBa₂Cu₃O₇ /

Kornecki, Michael, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
23

Single fluxoid thermal smearing and the second peak in YBa₂Cu₃O₇

Kornecki, Michael, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
24

A Barkhausen Noise Testing System for CANDU Feeder Pipes

WHITE, STEVEN ANDREW 22 July 2009 (has links)
A Barkhausen noise (BN) testing system was developed for the non-destructive evaluation (NDE) of residual stresses in CANDU reactor feeder pipes. The system consists of a four-channel arbitrary waveform flux control system (FCS), and the spring-loaded tetrapole prototype (SL4P) BN probe. The combination of the FCS and SL4P was shown to provide repeatable BN measurements on feeder pipe samples, with variations in air gaps between the SL4P poles and the sample from 0.43 mm to 1.29 mm, and typical pickup coil coupling uncertainties for the total BN energy from ±2% to ±7%. Precision for elastic strain estimation in feeder pipes was found to be between ±7 MPa and ±9 MPa in tension, depending on the excitation field configuration, and negligible in compression. Modelling of the BN penetration depth as a function of the excitation field was used to estimate the BN penetration depth between 5 μm at 300 kHz to a maximum of 500 μm at 3 kHz. The modelling, engineering, and procedures developed for this BN testing system provide an improved basis for the future advancement of BN testing, and ferromagnetic NDE in general. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-07-22 15:34:28.967
25

Invesigation of the Magnetic Flux Leakage Signatures of Dents and Gouges

Marble, KRISTOPHER 27 September 2009 (has links)
A study of gouges and dents in the context of pipelines has been completed, using the non-destructive evaluation (NDE) techniques of magnetic flux leakage (MFL) and magnetic Barkhausen noise (MBN). The research is part of an ongoing effort by the Applied Magnetics Group (AMG) at Queen's University to improve the interpretation of the MFL signal, which is used extensively by industry for defect detection and evaluation. The gouges were found to have distinctive MFL signatures depending on their orientation relative to the magnetization axis. Features in the MFL signal were identified as superpositions of geometry-related effects and strain or work hardening of the surface material. A qualitative magnetic permeability distribution in the material near a gouge has been proposed. The distribution is expected to vary in magnitude and extent according to the defect severity. The MFL results of the dent studies, on samples made available by Gaz de France (GdF), largely agreed qualitatively with previous research of dents. However, the differences pointed to the need for study of more varied dent shapes; new signal features were observed that suggested tensile residual strain in the dent rim is more prominent than earlier studies and modeling have predicted. Additionally, upgrades made to the MFL scanning system used by the AMG and a novel approach for building computer models are detailed. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-24 17:13:12.775
26

A high spatial resolution magnetovision camera using high-sensitivity Quantum Well Hall Effect sensors

Liang, Chen-Wei January 2017 (has links)
A systematic and detailed design, building and testing of a high-sensitivity real-time magnetovision imaging system for non-destructive testing (NDT) was the purpose of the research presented here. The magnetic imaging systems developed were all based on an ultra-high sensitivity Quantum Well Hall Effect (QWHE) sensors, denoted as the P2A, which is based on GaAs-InGaAs-AlGaAs 2DEG heterostructures. The research progressed from 0D (single sensor) to 1D (linear array) to 2D (two dimensional arrays) testing modalities. Firstly, the measurement of thermal and shot noises, drift, detection limit, and dynamic offset cancellation of the QWHE sensor were studied in detail to set the framework and limitations of the fundamental QWHE sensors before their eventual use in the imaging systems developed subsequently. The results indicate that the measured data agrees well with calculations for thermal and shot noise when the input bias current is < 3 mA. The measured drift voltages of various QWHE sensors (P2A and P3A) are less than 200 µV when the sensor bias voltage is less than or equal to 2 V. A 4-direction dynamic offset cancellation technique was developed and the results show that the offset equivalent magnetic field of the QWHE sensors can be reduced from ~ 1mT to readings equal to the Earth magnetic field (~ 50 µT). Secondly, a flexible 16 × 1 array and a 32 × 2 staggered array magnetic-field scanners were designed, built, and tested. The QWHE magnetometer had a field strength resolution of 100 nT, and a measurement dynamic range of 138 dB. The flexible 16 × 1 magnetic field scanner can be used to test uneven and/or curved surfaces. This gives the flexible magnetic field scanner better inspection capabilities in both welding hump and circular pipe samples. By the staggered arrangement of two sensor arrays, a 15.4 point per inch horizontal spatial resolution can be achieved for the staggered 32 × 2 magnetic field scanner. Both direct and alternating magnetic flux leakage (DC and AC MFL) tests with the QWHE magnetometer were accomplished to obtain graphical 2-dimensional magnetic field distributions. Both the shape and the location of defects can be identified. The results show that the sensor has high sensitivity and linearity in a wide frequency range which makes it an optimum choice for AC-MFL testing and both ferromagnetic and non-ferromagnetic materials can be investigated. Thirdly, real-time 8 × 8 and 16  16 QWHE array magnetic-field cameras were designed, built, and tested. These prototypes can measure static magnetic field strengths in a 2-dimensional plane. Different shapes of magnets and magnetic field polarities can all be identified by the 8 × 8 magnetic field camera. The camera has a resolution of 3.05 mT, and a dynamic range of 66 dB (the minimum and maximum fields measurable are 3.05 mT and 6.25 mT) and a real time magnetic field measurement rate of 13 frames per second (FPS). By contrast the1616 array magnetic field camera has an improved sampling rate of 600 frame per second and with the use of an interpolation technique, a spatial resolution of 40.6 point per inch can be achieved. The minimum and maximum detectable magnetic field for this magnetic field camera are 1.8 µT and 29.5 mT respectively leading to a record dynamic range of 84 dB for high quality imaging. Finally, a novel, hand held, magnetovision system based on the real-time 16 × 16 QWHE array magnetic-field camera was developed for improved DC and AC electromagnetic NDT testing. The system uses a new super heterodyne technique for data acquisition using the QWHE sensor as a multiplier. This is the first report of such a technique in Hall effect magnetometry. The experimental results of five case studies demonstrate that the defects location and shape can be successfully measured with MFL in DC and AC magnetic field configurations including depth profiling. The major advantages of this real-time magnetic-field camera are: (1) its ease to use as a MFL testing equipment in both DC and AC NDT testing, (2) its ability to provide 2D graphical images similar to Magnetic Particle Inspection (MPI) but without its inherent health and safety drawbacks, (3) its capability to test both ferromagnetic and non-ferromagnetic materials for deep defects below the surface using low frequency alternating magnetic fields, and (4) its ability to identify materials (metals) by alternating external magnetic field illuminations, which has considerable potential in several applications such as security checking and labelling, magnetic markers for analysis, bio-imaging detection, and medical treatments amongst others.
27

Eruptions and jets in the Sun

Lee, Eon Jui January 2017 (has links)
Magnetic flux emergence is a fundamental process in the Sun, during which magnetic fields emerge from the solar interior to the surface, to build up active regions and give onset to spectacular dynamic phenomena, such as eruptions and jets. In this thesis, we performed 3D, resistive MHD simulations to study the emergence and the associated magnetic activity of a quadrupolar region in the Sun. Our aim behind the setup of this initial condition (i.e. a quadrupolar region) was to study a magnetic field configuration, which has not been studied in detail before, although it has been repeatedly observed in the Sun and it has been shown that it can host intense magnetic activity (e.g. in the form of jets, flares and eruptions). The results of our experiments showed that the internal dynamics of such regions leads to the onset of eruptions in the form of twisted magnetic flux tubes (flux ropes). These eruptions are recurrent but they cannot escape the outermost field of the emerging flux (envelope field). They remain confined within the envelope field, as the downward tension of the outermost field lines overwhelms the upward Lorentz force of the erupting field. When we add an ambient magnetic field in the solar atmosphere, external reconnection between the emerging and the ambient field triggers the emission of (standard) reconnection jets. The external reconnection also releases the tension of the ambient field lines and, thus, the eruptions move in an ejective way towards the outer space. Namely, the confined eruptions become ejective eruptions, which escape from the numerical domain. These ejective eruptions drive a newly observed class of jets, the so called "blowout" jets. Our experiments reproduce some of the main observed characteristics of the "blowout" jets. We showed that "blowout" jets emit hot and cool plasma into the outer solar atmosphere simultaneously, and they undergo untwisting motion due to the relaxation of twist during their ejection. We found that the untwisting motion of the "blowout" jets is associated with the propagation of torsional Alfvén waves. Finally, we performed a parametric study to explore the effect of the ambient field strength on the onset and dynamics of the eruptive events. We found that one of the main effects is that the stronger ambient field suppresses the vertical expansion of the magnetic envelope of the quadrupolar region due to the higher magnetic pressure above it. This result has an effect on the emission of jets, which are emitted due to reconnection between the two fields. When the ambient field is relatively weak, it is pushed away from the strong emerging field and reconnection between them is not so persistent. On the other hand, when the ambient field is relatively strong, we find that more jets are ejected due to more efficient and more frequent reconnection between the two flux systems. As a consequence, we find that more mass and flux is being transferred into the solar corona by the reconnection jets. Also, we find that there are more eruptions when the ambient field is stronger. The study of the total energy flux carried by the jets showed that it is sufficient to provide the energy required to accelerate the high speed solar wind. This indicates that the "blowout" jets may play an important role in driving the solar wind.
28

Quantitative characterisation of defects in steel plates from MFL signals using inverse finite element modelling

Priewald, Robin H. January 2013 (has links)
No description available.
29

Influência dos parâmetros envolvidos no processo de união por interferência de tubos por cravamento eletromagnético

Geier, Martin January 2014 (has links)
A união por conformação eletromagnética de perfis tubulares de alta condutividade elétrica é um processo inovador e limpo que pode substituir com sucesso os processos convencionais de união baseados na fixação mecânica por parafusos, rebites, soldagem e adesivos estruturais. Esta tecnologia funciona a temperatura ambiente, permite a união de materiais diferentes e oferece potencial para promover novas aplicações na montagem de estruturas leves. Neste trabalho busca-se compreender a união por interferência de tubos por cravamento eletromagnético em termos de seus principais parâmetros com o objetivo de identificar a influência na resistência global das uniões e estabelecer a faixa útil de condições operacionais do processo. Inicialmente são apresentados os fundamentos teóricos do processo de conformação eletromagnética e suas principais variantes operacionais, seguido de um resumo do estado atual do conhecimento da aplicação desta tecnologia na união de perfis tubulares no qual é verificado que os parâmetros mecânicos são a tensão residual no mandril, a área e forma da zona de união e o coeficiente de atrito entre os componentes. Entretanto, tais parâmetros estão relacionados de forma complexa com o processo de cravamento eletromagnético, a começar pela energia e a distribuição do pulso de pressão magnética gerados pela máquina e ferramenta que “disparam” o processo de conformação, a folga inicial entre componentes, o material dos componentes e, a geometria, forma e rugosidade do mandril. O estudo experimental foca a união por interferência de tubos de alumínio (AA6082-O) com mandris de aço (AISI 1045) e alumínio (AA6082 nos estados O e T6) investigando de forma gradual a influência de parâmetros do processo na resistência mecânica (à tração) deste tipo de uniões. Os resultados obtidos demonstram que a resistência mecânica da união e os modos de falha associados são diretamente relacionados com os parâmetros de processo e condições do mandril. Além disso, outras importantes contribuições são apresentadas em relação à instrumentação para medição de fluxo magnético e eficiência global do processo e para o desenvolvimento e aplicações industriais desta tecnologia. / Joining of tubular profiles with high electrical conductivity by electromagnetic forming (EMF) is an innovative and clean technology that can successfully replace conventional joining technologies based on mechanical fixing with fasteners, rivets, welding and structural adhesives. The technology works at room temperature, allows joining dissimilar materials and offers potential to foster new applications in the assembly of lightweight tubular frame structures. This work investigates the interference-fit joining of tubes by electromagnetic crimping in terms of its major parameters with the aim of identifying their influence on the overall strength of the joints and establishing the useful range of process operating conditions. Initially, the theoretical principles of EMF and its main operational process variants are presented, followed by a summary of the current state of the knowledge of its application in the joining of tubular profiles in which it is found that the mechanical parameters are the residual stress at the joint interface, the area and shape of the joint interface and the friction coefficient between the joining partners. However, these parameters are related in a very complex way with the electromagnetic crimping process parameters, starting with the charging energy and by the machine and tool which generates the distribution of the magnetic pressure pulse that “triggers” the forming process, the initial gap between joining partners, the mandrel properties such as material, geometry, shape and surface roughness. The experimental study focuses the interference-fit of aluminum tubes (AA6082-O) on mandrels made of different materials and metallurgical conditions (AISI 1045, AA6082-O and AA6082-T6) and, therefore, the process is analyzed by the gradual influence of other process parameters aiming to achieve high strength joints. Results show that the joint strength and the associated failure mechanisms are directly related to process parameters and mandrel conditions. In addition, other important contributions are presented regarding the instrumentation for measuring the magnetic flux and overall process efficiency and to the development and implementation of this technology in industrial processes.
30

Influência dos parâmetros envolvidos no processo de união por interferência de tubos por cravamento eletromagnético

Geier, Martin January 2014 (has links)
A união por conformação eletromagnética de perfis tubulares de alta condutividade elétrica é um processo inovador e limpo que pode substituir com sucesso os processos convencionais de união baseados na fixação mecânica por parafusos, rebites, soldagem e adesivos estruturais. Esta tecnologia funciona a temperatura ambiente, permite a união de materiais diferentes e oferece potencial para promover novas aplicações na montagem de estruturas leves. Neste trabalho busca-se compreender a união por interferência de tubos por cravamento eletromagnético em termos de seus principais parâmetros com o objetivo de identificar a influência na resistência global das uniões e estabelecer a faixa útil de condições operacionais do processo. Inicialmente são apresentados os fundamentos teóricos do processo de conformação eletromagnética e suas principais variantes operacionais, seguido de um resumo do estado atual do conhecimento da aplicação desta tecnologia na união de perfis tubulares no qual é verificado que os parâmetros mecânicos são a tensão residual no mandril, a área e forma da zona de união e o coeficiente de atrito entre os componentes. Entretanto, tais parâmetros estão relacionados de forma complexa com o processo de cravamento eletromagnético, a começar pela energia e a distribuição do pulso de pressão magnética gerados pela máquina e ferramenta que “disparam” o processo de conformação, a folga inicial entre componentes, o material dos componentes e, a geometria, forma e rugosidade do mandril. O estudo experimental foca a união por interferência de tubos de alumínio (AA6082-O) com mandris de aço (AISI 1045) e alumínio (AA6082 nos estados O e T6) investigando de forma gradual a influência de parâmetros do processo na resistência mecânica (à tração) deste tipo de uniões. Os resultados obtidos demonstram que a resistência mecânica da união e os modos de falha associados são diretamente relacionados com os parâmetros de processo e condições do mandril. Além disso, outras importantes contribuições são apresentadas em relação à instrumentação para medição de fluxo magnético e eficiência global do processo e para o desenvolvimento e aplicações industriais desta tecnologia. / Joining of tubular profiles with high electrical conductivity by electromagnetic forming (EMF) is an innovative and clean technology that can successfully replace conventional joining technologies based on mechanical fixing with fasteners, rivets, welding and structural adhesives. The technology works at room temperature, allows joining dissimilar materials and offers potential to foster new applications in the assembly of lightweight tubular frame structures. This work investigates the interference-fit joining of tubes by electromagnetic crimping in terms of its major parameters with the aim of identifying their influence on the overall strength of the joints and establishing the useful range of process operating conditions. Initially, the theoretical principles of EMF and its main operational process variants are presented, followed by a summary of the current state of the knowledge of its application in the joining of tubular profiles in which it is found that the mechanical parameters are the residual stress at the joint interface, the area and shape of the joint interface and the friction coefficient between the joining partners. However, these parameters are related in a very complex way with the electromagnetic crimping process parameters, starting with the charging energy and by the machine and tool which generates the distribution of the magnetic pressure pulse that “triggers” the forming process, the initial gap between joining partners, the mandrel properties such as material, geometry, shape and surface roughness. The experimental study focuses the interference-fit of aluminum tubes (AA6082-O) on mandrels made of different materials and metallurgical conditions (AISI 1045, AA6082-O and AA6082-T6) and, therefore, the process is analyzed by the gradual influence of other process parameters aiming to achieve high strength joints. Results show that the joint strength and the associated failure mechanisms are directly related to process parameters and mandrel conditions. In addition, other important contributions are presented regarding the instrumentation for measuring the magnetic flux and overall process efficiency and to the development and implementation of this technology in industrial processes.

Page generated in 0.0607 seconds