• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nucleation and propagation of magnetic domain walls in cylindrical nanowires with diameter modulations / Nucléation et propagation de parois de domaine magnétiques dans des nanofils cylindriques avec des modulations en diamètre

Trapp, Beatrix 29 May 2018 (has links)
Dans les dispositifs actuels de sauvegarde de données, les bits d'informations sont stockées sous la forme de paroi de domaines dans une couche mince, voire des media "patternés". Le support reste donc 2D. De nos jours, la densité de stockage tend vers une valeur maximale qu'il est difficile de dépasser pour des raisons fondamentales et technologiques. Ainsi, récemment des efforts ont été réalisés pour développer des dispositifs 3D qui allient la polyvalence de la mémoire RAM solide avec un coût comparable à celui des disques durs actuels.Un nouveau concept théorique particulièrement intéressant pour une mémoire magnétique en 3D a été proposé en 2004 par S. Parkin et al.. Cette mémoire de type registre à décalage est constituée d'un réseau de nanofils magnétiques verticaux avec une section transversale cylindrique ou bien rectangulaire. Dans ce nouveau type de mémoire, les bits sont codés sous forme d'une série de parois de domaine. Cette dernière peut être déplacée vers une tête de lecture intégrée par des impulsions de courant polarisé en spin de quelques nanosecondes.Les parois de domaines magnétiques dans des nanofils cylindriques ont suscité l'intérêt de la communauté scientifique en raison de leur application possible dans un dispositif fonctionnel ainsi qu'en raison de nouvelles propriétés intéressantes qui résultent du confinement géométrique des parois. A ce jour, seules quelques études expérimentales sur de telles parois de domaines existent. Elles ont mis en évidence la difficulté de maîtriser la propagation de parois dues à des forts effets de piégeage. Jusqu'à présent, l'origine microscopique de ce piégeage n'a été que partiellement comprise. On s'attend à ce qu’indépendamment de la qualité géométrique du fil, la microstructure du matériau puisse jouer un rôle non négligeable.Dans le cadre du projet européen FP7 m3D, l'objectif de mon travail de thèse a été d'étudier la propagation des parois de domaine dans des nanofils cylindriques avec des modulations de diamètre. L'énergie de ces parois de domaine augmentant avec le diamètre du fil, on s'attend à ce que des excroissances (ou des constrictions) agissent comme des barrières d'énergie artificielles (respectivement puits). Par conséquent, une propagation de paroi de domaine contrôlée via la géométrie du fil semble possible.La première partie de mon travail concerne l'optimisation des matériaux. Des fils d'un alliage de NiCo (diamètre de 100-200nm et longueur de plusieurs dizaines de micromètres) avec deux géométries distinctes ont été fabriqués par électrodéposition en collaboration avec le groupe du Prof. J. Bachmann à l' Université d'Erlangen. Pour chaque géométrie, j'ai exploré l'effet de la composition de l'alliage ainsi que d'un recuit sur la microstructure du matériau. Par la suite, la propagation des parois de domaine dans des nanofils individuels a été étudiée sous l'influence d'un champ magnétique quasi-statique ou d'une impulsion de champ magnétique avec une durée d'impulsion de l'ordre de la nanoseconde. Dans la dernière partie de ma thèse, j'ai effectué des simulations micromagnétiques complémentaires pour étudier l'effet de la géométrie des modulations sur le piégeage de ces parois de domaine magnétiques. / In all current data storage devices, the information bits are stored in form of domain walls in a thin film or in patterned media on a two-dimensional surface . Within the next decade, further increase of the storage density in these devices is expected to come to a halt due to several fundamental and technological issues. Thus there have recently been efforts to develop three-dimensional devices combining the versatility of solid state RAM with the cost efficiency of common hard disk drives.A particularly interesting theoretical concept for a three-dimensional magnetic memory has been proposed in 2004 by S. Parkin et al. . Their racetrack memory consists of a vertical array of magnetic nanowires with either cylindrical or rectangular cross section. The bits are encoded in a series of up to 100 domain walls per wire. Using nanosecond spin polarized current pulses these walls are shifted past an integrated read head.Magnetic domain walls in cylindrical nanowires have raised the interest of the scientific community due to their possible application in a functional device as well as due to exciting new properties which arise from the geometric confinement. Up to date, only a few pioneering experimental studies on such domain walls exist. They indicate strong pinning effects preventing a deterministic domain wall propagation. So far the microscopic origin of this pinning has only partially been understood. It is expected however that beside the wire geometry the material microstructure may play a considerable role.Situated within the framework of the European FP 7 project m3D, the objective of my work has been to investigate the domain wall propagation in cylindrical nanowires with diameter modulations by means of magnetic force microscopy and micromagnetic simulation. As the domain wall energy increases with the wire diameter, protrusions (resp. notches) are expected to act as an artificial energy barrier (resp. well). Consequently, a deterministic domain wall propagation controlled via the wire geometry seems possible.A first part of my work concerns material optimization. For this, NiCo alloy wires (100-200nm diameter and multiple tens of micrometers in length) with two distinct geometries have been fabricated by template assisted electrodeposition (Chemist collaborators at Univ. Erlangen, Prof. J.Bachmann). I have then explored the impact of the alloy composition as well as of possible post-fabrication annealing on the material microstructure. Subsequently, domain wall propagation in individual nanowires has been investigated under the influence of either a quasistatic magnetic field or a nanosecond magnetic field pulse. In addition I have performed complementary micromagnetic simulations to study the effect of the modulation geometry on the domain wall pinning.
12

Processos de inversão da magnetização em redes de nanofios magnéticos modulados / Magnetization reversal processes in modulated magnetic nanowire arrays

Costa Arzuza, Luis Carlos, 1983- 31 August 2018 (has links)
Orientadores: Kleber Roberto Pirota, Fanny Béron / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T01:32:45Z (GMT). No. of bitstreams: 1 CostaArzuza_LuisCarlos_D.pdf: 5838350 bytes, checksum: f92268a1c7835ed7d3d7f0a83abe2e63 (MD5) Previous issue date: 2016 / Resumo: Este trabalho visa estudar a inversão da magnetização de redes de nanofios de níquel modulados, incorporados em membranas porosas de alumina. A modulação do nanofio foi obtida a partir da variação do diâmetro, resultando em nanofios com dois segmentos. O diâmetro de cada segmento está ao redor do diâmetro crítico do Ni (40 nm), onde, abaixo e acima do mesmo, a inversão da magnetização acontece por meio de diferentes estruturas da parede de domínio; transversais e vórtex. A caracterização magnética das redes de nanofios foi feita usando simulações micromagnéticas e curvas de histerese magnética e de reversão de primeira ordem (método FORC). As medidas foram realizadas em vários arranjos de nanofios ordenados com diferentes razões de comprimento e diâmetros de segmentos, e estas foram comparadas com o arranjo de nanofios sem variação do diâmetro. Simulações micromagnéticas em nanofios isolados e arranjo de nanofios de primeiros vizinhos, mostram que a estrutura da parede de domínio, a qual depende do diâmetro do segmento, sofre uma transformação ao cruzar a região da modulação do diâmetro, porém a dinâmica da transformação depende das dimensões de cada segmento do nanofio. O comportamento magnético experimental do arranjo é atribuído a um campo de interação não homogêneo entre os nanofios, o qual surge devido a modulação do diâmetro. Este campo dá origem a uma interação mais forte na extremidade com diâmetro maior em relação à extremidade com diâmetro menor, resultando em um comportamento da susceptibilidade bastante complexo. Consideramos como principal resultado deste trabalho à possibilidade de controlar o mecanismo de inversão da magnetização em rede de nanofios modulados através da modulação do diâmetro. Os resultados obtidos foram interpretados através dos diagramas FORC, onde o processo dinâmico da inversão da magnetização é evidenciado por meio de diagramas estáticos (diagramas FORC), similar a uma foto estroboscópica / Abstract: We studied the magnetization reversal in modulated nickel nanowire arrays, embedded in porous alumina membranes. The modulation of the nanowire was obtained from the variation in diameter, resulting in nanowires with two segments. The diameter of each segment is below and above the critical diameter for Ni (40 nm), for which the reversal of magnetization changes from transversal to vortex domain wall structure. Magnetic characterization of nanowire networks was made using micromagnetic simulations, magnetic hysteresis and First-order reversal curves (FORC method). The measurements were performed in nanowire arrays with different ratios of length and diameter. The results were compared with the arrangement of nanowires without diameter variation. Micromagnetic simulations for isolated nanowires and nanowire array with few magnetic entities show that the structure of domain wall, which depends on the segment diameter, changes when it crosses the separation region of the diameter modulation and the dynamics of transformation depends on the dimensions of each nanowire¿s segment. The experimental magnetic behavior of the nanowire array is attributed to an inhomogeneous interaction field among the nanowires due to diameter modulation. This effect gives rise to a stronger interaction in the larger diameter segment resulting in a very complex susceptibility behavior. We consider the possibility to control the reversal magnetization mechanism in nanowire array through diameter modulation as the main result of this work. The results were interpreted using the FORC diagrams where the dynamic process of magnetization reversal is evidenced by static diagrams (FORC diagrams), similar to a stroboscopic picture / Doutorado / Física / Doutor em Ciências / 1060136/2011 / CAPES
13

Estudo da dinâmica da parede de domínio transversal em nanofios magnéticos mediante aplicação de corrente de spin polarizada

Gomes, Josiel Carlos de Souza 26 February 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-12-22T12:37:32Z No. of bitstreams: 1 josielcarlosdesouzagomes.pdf: 11267373 bytes, checksum: 393a01f57f4f5afaaf46890b84f4a7ac (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-12-22T12:42:22Z (GMT) No. of bitstreams: 1 josielcarlosdesouzagomes.pdf: 11267373 bytes, checksum: 393a01f57f4f5afaaf46890b84f4a7ac (MD5) / Made available in DSpace on 2016-12-22T12:42:22Z (GMT). No. of bitstreams: 1 josielcarlosdesouzagomes.pdf: 11267373 bytes, checksum: 393a01f57f4f5afaaf46890b84f4a7ac (MD5) Previous issue date: 2015-02-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A nanotecnologia é uma área de estudo promissora e que nos mostra resultados bastante surpreendentes. Amostras magnéticas (Cobalto e liga de Permalloy (Ni81Fe19), por exemplo) em escala nanométrica, têm como aplicabilidade importante a gravação magnética devido à crescente demanda por meios de gravação cada vez mais rápidos e de alta capacidade de armazenamento. Para determinados tamanhos de nanofios, observa-se a presença de domínios magnéticos e paredes de domínios do tipo vórtice ou transversal que podem ser transportadas para diferentes regiões sem deformação. Pode-se usar tais paredes como bit de informação mas, para isso, precisa-se conhecer com detalhes o comportamento dessas paredes em diversas situações. Neste presente trabalho utilizamos simulações numéricas para estudar o comportamento da magnetização em nanofios retangulares (nanofitas) de Permalloy-79, que apresentam parede de domínio transversal entre domínios “head-to-head”. Utilizamos nestas simulações um modelo no qual os momentos magnéticos interagem através da interação de troca e a interação dipolar. Embora a maioria dos trabalhos encontrados utilizem campo magnético para mover a parede, optamos por aplicar corrente de spin-polarizado na direção do nanofio devido ao fato de ser mais prático de ser produzido. A dinâmica do sistema é regida pelas equações de Landau-Lifshitz-Gilbert e a atuação da corrente é introduzida nessas equações. Fizemos uma abordagem teórica na qual pode-se mostrar como esta equação de Landau-Lifshitz-Gilbert para aplicação de corrente foi obtida. A integração da equação de Landau-Lifshitz-Gilbert é feita utilizando o método de Runge-Kutta e de Predição-Correção. Baseado nessas teorias, escrevemos um programa na linguagem Fortran-90 para realizar as simulações. Em nossos resultados observamos o comportamento da velocidade da parede de domínio em função do tempo e da densidade de corrente. Comparamos estes resultados com a bibliografia. / Nanotechnology is a promising field of study and show us pretty amazing results. Magnetic samples (Cobalt and alloy Permalloy (81NiFe19), for example) at the nanometer scale, have as important applicability the magnetic recording due to the growing demand for recording media ever faster and high storage capacity. For certain sizes of nanowires, it is observed the presence of magnetic domains and vortex domain walls or transverse domain wall which can be transported to different regions without deformation. It can use such walls as bit of information, but for that it is necessary to know in detail the behavior of these walls in various situations. In this work we used numerical simulations to study the behavior of the magnetization in rectangular nanowires (nanostrip) of Permalloy-79, which have transverse domain wall between domains "head-to-head."We used in these simulations a model in which the magnetic moments interact through the exchange interaction and the dipolar interaction. Although most studies found use magnetic field to move the wall, we decided to apply spin-polarized current toward the nanowire due the fact that it is more practical to be produced. The dynamics of the system is governed by the equations of Landau-Lifshitz-Gilbert and the current performance is introduced in these equations. We made a theoretical approach in which you can show how this equation of Landau-Lifshitz-Gilbert for applying current was obtained. The integration of the equation of Landau-Lifshitz-Gilbert is done using the Runge-Kutta and Prediction-Correction methods. Based on these theories, we wrote a program in Fortran-90 language to perform the simulations. In our results we observed the behavior of the domain wall velocity as a function of time and current density. We compare these results with the literature.
14

Estudo da dinâmica da parede de domínio transversal em nanofitas magnéticas na presença de impurezas

Santos, Anderson Lira de Sales 03 August 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-10T13:25:41Z No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Favor verificar se Araújo não tem acento: Membro da banca: Araujo, Clodoaldo Irineu Levartoski de on 2018-01-23T11:47:06Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-23T13:11:26Z No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T13:15:19Z (GMT) No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) / Made available in DSpace on 2018-01-23T13:15:19Z (GMT). No. of bitstreams: 1 andersonliradesalessantos.pdf: 15105576 bytes, checksum: 64b0938ed4211d7b4d1f253445ad7b79 (MD5) Previous issue date: 2017-08-03 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O estudo da dinâmica das paredes de domínio em uma nanofita magnética tem atraído um grande interesse por conta das suas importantes aplicações tecnológicas em mídias magnéticas e memória RAM (Random Access Memory). Para determinadas geometrias e tamanhos, a nanofita magnética apresenta paredes de domínio magnético tipo transversal ou vórtice, que com a aplicação de uma força externa podem ser transportadas para diferentes regiões da nanofita sem perder suas propriedades magnéticas. Neste trabalho, estudamos a influência de uma fita de impureza magnética sobre a dinâmica de uma parede de domínio transversal (PDT) em uma nanofita magnética de Permalloy-79 (Ni79Fe21), via simulação computacional. A PDT émovida com a aplicação de uma corrente de spin polarizada na direção do eixo da nanofita. Nas nossas simulações, as nanofitas são modeladas por uma hamiltoniana que leva em consideração a interação de curto (troca) e longo (dipolar) alcance dos momentos magnéticos. A dinâmica do sistema éregida pela equação de Landau-Lifshitz-Gilbert com o termo da corrente de spin. Nós calculamos a energia de interação entre a PDT e a fita de impureza, e variando a intensidade da corrente de spin, determinamos o valor mínimo da corrente necessária para “arrancar”a PDT da fita de impureza. Mostramos que este valor mínimo depende, principalmente, da largura da nanofita e da constante de troca J' entre o material da nanofita e o da impureza. Este estudo tem grande importância para aplicações tecnológicas que utilizam o movimento da parede de domínio. / The study of the dynamics of domain wall in magnetic nanowires have attracted a vast interest because of their important technological applications in magnetic media and MRAM’s (Random Access Memory). For certain geometries and sizes, magnetic nanowires present transverse domain walls or vortex domain walls, which with the application of an ex-ternal field can be transported to different regions of the nanowire without losing its magnetic properties. In this work, we have studied the influence of a cluster of magnetic impurities on the transverse domain wall (TDW) dynamics in a magnetic nanowires of Permalloy-79 (Ni79Fe21) using numerical simulations. The TDW is driven by the application of a spin polarized current in the direction of the nanowires axes. In our simulations, the nanowires are modeled by a Hamiltonian that takes into account the short (exchange) and long (dipolar) range interactions of magnetic moments. The dynamics of the system is governed by the Landau-Lifshitz-Gilbert equations with spin current term. We have studied the interaction potential between the TDW and the cluster, and by varying the applied spin current, we can determine the minimum value of the current necessary to depin the domain wall of the cluster. We have shown that this minimum value depends on the width of the nanowire and the exchange constant J' between the material of the nanowire and the impurity. The present study is of the great significance for technological applications that use movement of domain walls.
15

Élaboration de nanofils magnétiques de cobalt-nickel par voie polyol : mise à l'échelle du procédé et consolidation par le procédé frittage flash SPS / Developpment of magnetic cobalt-nickel nanowires by polyol way : scale-up of the process and consolidation by SPS sintering

Ouar, Nassima 05 February 2015 (has links)
L’objectif principal de ce travail est de produire des pièces massives nanostructurées à partir des nanomatériauxd’alliages anisotropes à base des éléments de transition 3d (Co et Ni). Afin d’utiliser ces nanomatériaux àl’échelle industrielle, nous avons extrapolé la méthode de synthèse de l’échelle du laboratoire (procédé polyol) àl’échelle pilote. Tout d’abord, nous avons montré qu’en variant les paramètres de synthèse à l’échelle delaboratoire, nous pouvons contrôler non seulement la morphologie mais aussi la taille et la distribution de tailledes nanoparticules. En effet, des sphères de diamètre 10 nm et des nanofils de longueur 260 nm et de diamètre 7nm ont été obtenus pour la stoechiométrie Co80Ni20. Les paramètres clés de cette étude sont la concentration dela soude, le taux de l'agent nucléant, la vitesse d’agitation et le champ magnétique externe appliqué. Le choix dusystème de mélange approprié pour une géométrie du réacteur donnée a également un rôle important dans lecontrôle et la maîtrise de la taille et la forme des nanofils. Avec une turbine Rushton à six pâles droites, nousavons obtenu des nanofils plus courts avec de plus petites têtes coniques et une forte coercitivité. Par ailleurs, larésolution numérique des équations de Navier-Stocks qui gouvernent le transport de matière et de la quantité demouvement dans un fluide agité a permis d’obtenir une corrélation entre les profils d’énergie turbulente dissipéeet la taille des nanoparticules mesurée expérimentalement. Les études magnétiques montrent que les propriétésmagnétiques des nanofils sont intimement liées à leur forme et à leur taille. La synthèse à grande échelle apermis de produire 25 grammes de nanofils de cobalt-nickel par batch. Grâce au procédé de frittage SPS, nousavons élaboré avec succès des matériaux massifs nanostructurés à partir de la poudre formée des nanofils. Alorsque les nanofils présentent des champs coercitifs élevés et des aimantations relativement faibles, les matériauxdenses consolidés par SPS possèdent les caractéristiques d’un ferromagnétisme doux (faible champ coercitif)mais une aimantation à saturation élevée proche de celle attendue. Des champs coercitifs meilleurs sont obtenusavec le matériau dense nanostructuré élaboré en présence d’un champ magnétique permanent. Ce champmagnétique a permis un meilleur alignement des nanofils au cours du frittage. Le comportement mécanique desmatériaux nanostructurés dépend essentiellement de la taille des grains. La dureté et la résistance mécaniqueaugmentent quand la taille des grains diminue conformément à la relation de Hall-Petch. / The main objective of this PhD work is to produce nanostructured bulk from anisotropic nanomaterials alloysbased on 3d transition elements (Co and Ni). For using these nanomaterials on an industrial scale, we haveextrapolated the synthesis method (polyol process) from laboratory scale to pilot scale. First, we showed that byvarying the parameters synthesis in laboratory scale we can control not only the morphology but also the size andthe size distribution of the nanoparticles. Indeed, spheres with diameter of 10 nm and nanowires with meanlength of 260 nm and a diameter of 7 nm were obtained for a stoichiometry Co80Ni20. The key parameters of thissynthesis are the concentration of the sodium hydroxide, the nucleation rate, the agitation and the appliedexternal magnetic field. The choice of suitable mixing system for a given geometry of the reactor also has animportant role for the control of the size and shape of the nanowires. When a six-bladed Rushton turbine wasused, shorter nanowires with unconventional small conical-shaped heads and a higher coercive field wereobtained, confirming a strong relationship between flow patterns and nanowire growth. Moreover, numericalresolution of Navier-Stocks equations that govern the transport of matter and quantity of movement in anagitated fluid allowed us to obtain a correlation between turbulent energy dissipation profiles and nanoparticlesize measured experimentally. Magnetic studies revealed a narrow relationship between the magnetic propertiesand the shape of nano-objects. The large-scale synthesis has produced 25 grams of cobalt-nickel nanowires perbatch. Thanks to the SPS sintering process, we have successfully elaborated nanostructured bulk materials.Whereas nanofils show high coercive field and low saturation magnetization, dense materials produced at hightemperatures behave as soft ferromagnetic materials (low coercivity) but show high saturation magnetizationvery close to that expected. The best coercivities are obtained with the bulk nanostructured material using SPSassisted by a permanent magnetic field. This magnetic field succeeded to align the nanowires during sintering.The mechanical behavior of the nanostructured materials depends mainly on the grain size. Hardness andmechanical resistance increase when the grain size decreases in agreement with the Hall-Petch relationship.
16

Grundlegende Untersuchungen zum CVD-Wachstum Fe-gefüllter Kohlenstoff-Nanoröhren

Müller, Christian 26 June 2008 (has links) (PDF)
Gegenstand dieser Arbeit war: - die Optimierung und Modellierung des CVD-Wachstums von Fe-gefüllten CNTs aus Ferrocen, - die Auswahl geeigneter Schichtsysteme für das orientierte Wachstum Fe-gefüllter CNTs, - eine umfassende Charakterisierung der Nanostrukturen und deren Bezug zu den Wachstumsparametern, - die Formulierung eines allgemeingültigen Wachstumsmodels. Es wurde eine Anlage zur thermisch induzierten chemischen Gasphasenabscheidung bei Atmosphärendruck verwendet. Im Mittelpunkt der Syntheseexperimente standen Fe-gefüllte MWCNTs. Als Precursoren dienten Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer. Für die Darstellung von CNT-Ensembles mit idealerweise paralleler Ausrichtung der Einzelindividuen kamen thermisch oxidierte Si-Substrate (Schichtdicke des Oxid: 1 µm) zum Einsatz. Das Wachstum der CNTs wurde überwiegend als cokatalysierter Prozess durchgeführt, d.h. neben dem Fe aus dem Precursor dienten dünne Metallschichten (Fe, Co, oder Ni, Schichtdicke ≤ 10 nm), die auf den Substraten deponiert waren, als Katalysatorreservoir. Zunächst ging es darum den CVD-Prozess hinsichtlich tubularer CNTs mit senkrechter Vorzugsorientierung zur Substratoberfläche, einer guten Kristallinität der Hülle, sowie einem hohen Füllungsanteil der ferromagnetischen α-Fe-Phase zu überprüfen. Generell ließ sich die Abscheidung gefüllter CNTs für mittlere Substrattemperaturen im Bereich von 1013 – 1200 K durchführen. Die optimale Wachstumstemperatur lag bei ≈ 1103 K. Mit den beiden Precursoren - Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer ließen sich Fe-gefüllte CNTs in guter Qualität darstellen. Letztere Verbindung verringerte die Abscheidung von amorphem Kohlenstoff auf der CNT-Oberfläche, barg allerdings die Nachteile einer Sauerstoffkontamination und höherer Verdampfungs-temperaturen in sich. Aus der Vielzahl von Experimenten konnte abgeleitet werden, dass die Haupteinflussgrößen für den Innen- und Außendurchmesser der CNTs die Katalysatorschicht auf dem Substrat, die Synthesetemperatur und der Precursormassenstrom sind. Höhere Temperaturen und/oder ein Mehrangebot an Precursor äußerten sich stets in größeren Durchmessern. Zusätzliche Metallschichten auf den oxidierten Si-Substraten erlaubten eine gezielte Durchmesservariation. Beispielsweise zeigte sich an Substraten mit 2 nm Fe bzw. 2 nm Ni, dass sich die mittleren CNT-Außendurchmesser gegenüber dem auf unbeschichteten Substraten (34 nm) zu 44 nm bzw. 30 nm verändern lässt. Mit Al-Zwischenschichten konnten sogar Durchschnittswerte für den CNT-Außendurchmesser von 18 nm erzielt werden. Durch Röntgenstrukturuntersuchungen und Mössbaueranalysen an CNT-Ensembles wurde α-Fe als Hauptbestandteil der Füllung identifiziert. Auf den hohen Anteilen der α-Fe-Phase beruhte auch das magnetische Verhalten der Nanodrähte. Ein Beleg für die Schlüsselrolle des Systems Fe-C während des Wachstumsprozesses war die Phase Fe3C, mit orthorhombischer Struktur. Weniger häufig ließ sich γ-Fe nachweisen. Darüber hinaus konnten sämtliche CNT-Füllungen mittels SAED und HRTEM als Einkristalle charakterisiert werden. Die innerhalb der CNTs eingeschlossenen Fe- oder Fe-C-Nanodrähte wiesen außerdem keine kristallographische(n) Vorzugsrichtung(en) gegenüber den CNT-Wänden auf. Anhand der experimentellen Befunde war es möglich ein phänomenologisches Wachstumsmodell vorzuschlagen, welche eine Erweiterung des VLS-Mechanismus darstellt. Das in der vorliegenden Arbeit vorgestellte Modell greift das base-growth-Konzept auf und favorisiert die Akkumulation von Katalysatormaterial über die geöffneten Enden der CNTs. Eine genauere kinetische und thermodynamische Beschreibung war aufgrund der im Nanometerbereich nur schwer zugänglichen Stoffdaten nicht möglich.
17

Investigations and Stabilization of Vortex States in Cobalt and Permalloy Nanorings in Contact with Nanowires

Lal, Manohar January 2017 (has links) (PDF)
Magnetic nanorings are the object of increasing scientific interest because they possess the vortex (stray field free) state which ensures lower magnetostatic interactions between adjacent ring elements in high packing density memory devices. In addition, they have other potential applications such as single magnetic nanoparticle sensors, microwave-frequency oscillators and data processing. The stabilization of magnetization state, types of domains and domain wall structures depends on the competing energies such as magnetostatic, exchange and anisotropy. The nucleation/ pinning of domain walls depends on the local inhomogeneity in shape such as roughness, notches etc, which play an important role in stabilizing domain configurations that can be controlled by magnetic field/spin polarized current etc. The information gained by the study of magnetization reversal in the nanoring devices could help in understanding the possible stable magnetization states, which can be incorporated into the development of magnetic logic and recording devices in a NR-based architecture. The magnetization reversal and the stable states in the symmetric cobalt nanorings (NRs) attached with nanowires (NWs) (at diametrically opposite points), is studied through magnetoresistance (MR) measurements by application of in-plane magnetic field (H). Here, a strong in-plane shape anisotropy is introduced in cobalt thin films by patterning them into NR and NWs. The presence or absence of a DW in the device is detected utilizing the AMR property of the material, where the presence of DW leads to a decrease in the resistance of the probed section of the device. It is demonstrated that the magnetization reversal of the device with smaller width, proceeds through four distinct magnetization states, one of these is the stabilized vortex state that persists over a field range of 0.730 kOe. The effect of width (from 70 nm to 1 µm) and diameter (from 2 µm to 6 µm) on the switching behavior is demonstrated. The magnetization states observed in the MR measurements are well supported by micromagnetic simulations. A statistical analysis of switching fields in these devices was demonstrated by histogram plot (of switching counts) to understand the repeatability and reproducibility of switching characteristics. In addition, the magnetization reversal of permalloy NR is also studied by MR experiment when two NWs are attached to it in two different configurations. It has been demonstrated that a vortex state can be stabilized if the NWs are attached in a way that they are at an obtuse angle with respect to each other (type-II device) which is not the case if the NWs are attached at diametrically opposite points (type-I device). This occurs because the NWs reverse at different fields as they are asymmetric with respect to applied magnetic field at every angle. The angular dependence study of the magnetization states indicates that the vortex state could be always stabilized in the type-II device irrespective of the direction of in-plane applied magnetic field while it is not the case in type-I device. The experimental observations are in good agreement with micromagnetic simulations performed on similar device structures. Further, in the last part of the thesis, the magnetization reversal of geometrically engineered cobalt NR (of width 80 nm) devices are studied by application of H. Two types of cobalt nanoring devices were fabricated. In type-1 devices the NR is attached with two nanowires (NWs) at diametrically opposite positions. In type-2 devices the NR is attached with one NW, whose other end is attached to a 5 µm x 5 µm square pad. In type-2 device, the pad reverses first, thus causing the generation of a DW at the junction of the nucleation pad and the NW. The device type-2 possesses five distinct magnetization states, one of these is the vortex state. Easy nucleation of domain walls (DWs) results in a decrease of switching field corresponding to the reversal of the nanowire. This leads to an increase in the range of fields, where the vortex state exists. In addition, angular dependence of the switching behavior indicates that the vortex state can be stabilized at all in-plane orientations of H. This occurs because of the fact that symmetry was broken due to the presence of single domain wall pinning center which was the junction of the NR and NW. The results of our micromagnetic simulations are in a good agreement with the experimental results. These results are important to understand the role of NWs which allows the formation of vortex state at every angle of the in-plane H. In type-1 device, the simulation shows that when the field is applied at any angle away from the axis of the NW, the vortex state cannot be stabilized. The width dependent study of switching fields indicates, that the switching fields decrease with increasing the width of NR devices due to a reduction of the demagnetization field.
18

Current Induced Magnetization Dynamics in Nanostructures / Current Induced Magnetization Dynamics in Nanostructures

Uhlíř, Vojtěch January 2010 (has links)
Předkládaná dizertační práce pojednává o problematice pohybu doménových stěn (DS) vyvolaného spinově polarizovaným proudem v magnetických nanodrátech na bázi spinového ventilu NiFe/Cu/Co. Jedná se o tzv. efekt přenosu spinového momentu. Multivrstevnatý systém NiFe/Cu/Co, kde se doménová stěna pohybuje ve vrstvě NiFe, vykazuje velmi vysokou účinnost přenosu spinového momentu, což bylo v literatuře potvrzeno na základě magnetotransportních měření. Tato práce má za cíl pozorovat stav DS během jejich pohybu, pomocí fotoelektronové mikroskopie kombinované s kruhovým magnetickým dichroismem. Tato technika využívá synchrotronové záření, které svým časovým rozlišením umožňuje sledovat dynamickou odezvu magnetizace na elektrický proud. Podstatnou částí řešení byla optimizace růstu vrstev NiFe/Cu/Co kvůli snížení magnetické dipolární interakce mezi vrstvami. V práci je také řešen způsob přípravy nanodrátů litografickými metodami. Byly provedeny dva módy měření: i) kvazistatický, tj. pozorování DS před a po injekci proudu do nanodrátu a ii) dynamické měření, kde je DS sledována během působení proudového pulzu. S využitím kvazistatickém módu byla vypracována rozsáhlá statistika pohybu DS: i) byly naměřeny jejich vysoké rychlosti přesahující 600 m/s za působení průměrné proudové hustoty nutné k posuvu doménové stěny - 5x10^11 A/m^2; ii) DS jsou v systému NiFe/Cu/Co velmi silně zachycovány dipolární interakcí mezi NiFe a Co způsobenou nehomogenitou krystalové struktury ve vrstvě Co. V dynamickém módu bylo odhaleno, že působením Oerstedovského pole kolmého na nanodráty v rovině vzorku se magnetizace ve vrstvě NiFe silně natáčí. Tento efekt přispívá k vysokým rychlostem DS pozorovaných v nanodrátech NiFe/Cu/Co.
19

Études des propriétés magnétiques de nanofils de cobalt monocristallins en réseaux ultra-denses / Magnetic properties of single cristal cobalt nanowire in ultra dense arrays

Pierrot, Alexandre 22 January 2019 (has links)
Les travaux réalisés lors de cette thèse ont pour but la caractérisation magnétique et structurale de réseaux ultra-denses de nanofils monocristallins de cobalt de structure hcp avec l’axe c parallèle à l’axe des nanofils. Ces réseaux sont obtenus par une méthode physico-chimique dite croissance hybride. Le nanomatériau obtenu est un réseau de nanofils monocristallins de Co verticaux épitaxiés sur un film de platine. La cristallinité des nanofils induit une forte anisotropie perpendiculaire au réseau faisant émerger des propriétés physiques qui pourraient répondre au cahier des charges pour constituer des média magnétiques à haute capacité. Le manuscrit s’organise en quatre parties. Il convient dans un premier temps d’exposer une revue de la littérature décrivant le comportement magnétique d’un nano-cylindre isolé puis d’un réseau hexagonal de nano-cylindres. La méthode de magnétométrie utilisée pour caractériser ces réseaux est appelée méthode FORC (First Order Reversal Curves). La mesure et le traitement associé permettent de tracer des diagrammes dits FORC dans lesquels peuvent être lus les caractéristiques magnétiques des nanofils et leurs interactions. La lecture de ces diagrammes n’étant pas directe, le chapitre II est consacré à la description de la méthode FORC appliquée à des assemblées d’hystérons. Cette investigation a demandé d’être soutenue par des simulations micromagnétiques afin d’appuyer les hypothèses formulées lors de l’interprétation des diagrammes FORC mesurés. Il apparait ainsi une famille en très bon accord avec les modèles théoriques exposés dans le chapitre I, puis une seconde famille dont la description précise nécessite l’ajout d’une interaction magnétisante entre nanofils en plus de l’interaction magnétostatique. / The work carried out during this thesis aims at the magnetic and structural characterization of ultra-dense arrays of single crystalline cobalt hcp nanowires with the c axis parallel to the wires axis. These arrays are obtained by a physicochemical method called hybrid growth. The resulting nanomaterial is an array of vertical Co nanowires epitaxially grown on a platinum film, with diameters of 6 to 15 nm and coated with organic ligands. The crystallinity of the nanowires induces a strong anisotropy perpendicular to the substrate, giving rise to physical properties that could meet the specifications to constitute high density magnetic media. The manuscript is organized in four parts. First, a review of the literature describing the behavior of isolated magnetic nano-cylinders and dense arrays of nano-cylinders is presented. The magnetometry method used to characterize these arrays is called the FORC (First Order Reversal Curves) method. This measurement and analysis lead to the plot of FORC diagrams which contain the magnetic properties of nanowires and their interactions. The reading of these FORC diagrams being undirect, the chapter II is devoted to the description of the FORC method applied to assemblies of hysterons. Because of its reproducibility, the physico-chemical synthesis is a critical point of this study which is detailed in Chapter III. FORC magnetometry applied to two families of synthesized samples is described in Chapter IV. This investigation has required numerous micromagnetic simulations to support the assumptions made in the interpretation of FORC diagrams. This deep analysis reveals a first family in very good agreement with the theoretical models exposed in chapter I, and a second family for which the precise description requires the addition of a magnetizing interaction between nanowires in addition to the magnetostatic one.
20

Grundlegende Untersuchungen zum CVD-Wachstum Fe-gefüllter Kohlenstoff-Nanoröhren

Müller, Christian 13 June 2008 (has links)
Gegenstand dieser Arbeit war: - die Optimierung und Modellierung des CVD-Wachstums von Fe-gefüllten CNTs aus Ferrocen, - die Auswahl geeigneter Schichtsysteme für das orientierte Wachstum Fe-gefüllter CNTs, - eine umfassende Charakterisierung der Nanostrukturen und deren Bezug zu den Wachstumsparametern, - die Formulierung eines allgemeingültigen Wachstumsmodels. Es wurde eine Anlage zur thermisch induzierten chemischen Gasphasenabscheidung bei Atmosphärendruck verwendet. Im Mittelpunkt der Syntheseexperimente standen Fe-gefüllte MWCNTs. Als Precursoren dienten Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer. Für die Darstellung von CNT-Ensembles mit idealerweise paralleler Ausrichtung der Einzelindividuen kamen thermisch oxidierte Si-Substrate (Schichtdicke des Oxid: 1 µm) zum Einsatz. Das Wachstum der CNTs wurde überwiegend als cokatalysierter Prozess durchgeführt, d.h. neben dem Fe aus dem Precursor dienten dünne Metallschichten (Fe, Co, oder Ni, Schichtdicke ≤ 10 nm), die auf den Substraten deponiert waren, als Katalysatorreservoir. Zunächst ging es darum den CVD-Prozess hinsichtlich tubularer CNTs mit senkrechter Vorzugsorientierung zur Substratoberfläche, einer guten Kristallinität der Hülle, sowie einem hohen Füllungsanteil der ferromagnetischen α-Fe-Phase zu überprüfen. Generell ließ sich die Abscheidung gefüllter CNTs für mittlere Substrattemperaturen im Bereich von 1013 – 1200 K durchführen. Die optimale Wachstumstemperatur lag bei ≈ 1103 K. Mit den beiden Precursoren - Ferrocen und Cyclopentadienyl-eisen-dicarbonyl-dimer ließen sich Fe-gefüllte CNTs in guter Qualität darstellen. Letztere Verbindung verringerte die Abscheidung von amorphem Kohlenstoff auf der CNT-Oberfläche, barg allerdings die Nachteile einer Sauerstoffkontamination und höherer Verdampfungs-temperaturen in sich. Aus der Vielzahl von Experimenten konnte abgeleitet werden, dass die Haupteinflussgrößen für den Innen- und Außendurchmesser der CNTs die Katalysatorschicht auf dem Substrat, die Synthesetemperatur und der Precursormassenstrom sind. Höhere Temperaturen und/oder ein Mehrangebot an Precursor äußerten sich stets in größeren Durchmessern. Zusätzliche Metallschichten auf den oxidierten Si-Substraten erlaubten eine gezielte Durchmesservariation. Beispielsweise zeigte sich an Substraten mit 2 nm Fe bzw. 2 nm Ni, dass sich die mittleren CNT-Außendurchmesser gegenüber dem auf unbeschichteten Substraten (34 nm) zu 44 nm bzw. 30 nm verändern lässt. Mit Al-Zwischenschichten konnten sogar Durchschnittswerte für den CNT-Außendurchmesser von 18 nm erzielt werden. Durch Röntgenstrukturuntersuchungen und Mössbaueranalysen an CNT-Ensembles wurde α-Fe als Hauptbestandteil der Füllung identifiziert. Auf den hohen Anteilen der α-Fe-Phase beruhte auch das magnetische Verhalten der Nanodrähte. Ein Beleg für die Schlüsselrolle des Systems Fe-C während des Wachstumsprozesses war die Phase Fe3C, mit orthorhombischer Struktur. Weniger häufig ließ sich γ-Fe nachweisen. Darüber hinaus konnten sämtliche CNT-Füllungen mittels SAED und HRTEM als Einkristalle charakterisiert werden. Die innerhalb der CNTs eingeschlossenen Fe- oder Fe-C-Nanodrähte wiesen außerdem keine kristallographische(n) Vorzugsrichtung(en) gegenüber den CNT-Wänden auf. Anhand der experimentellen Befunde war es möglich ein phänomenologisches Wachstumsmodell vorzuschlagen, welche eine Erweiterung des VLS-Mechanismus darstellt. Das in der vorliegenden Arbeit vorgestellte Modell greift das base-growth-Konzept auf und favorisiert die Akkumulation von Katalysatormaterial über die geöffneten Enden der CNTs. Eine genauere kinetische und thermodynamische Beschreibung war aufgrund der im Nanometerbereich nur schwer zugänglichen Stoffdaten nicht möglich.

Page generated in 0.105 seconds