• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 92
  • 58
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 565
  • 565
  • 86
  • 85
  • 76
  • 76
  • 66
  • 58
  • 54
  • 54
  • 48
  • 46
  • 46
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Magnetic Properties Of Sputter Deposited Fe-based Amorphous Thin Films For Resonator Application

China, Chaitali 01 January 2006 (has links)
In this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was characterized using secondary ion mass spectroscopy (SIMS). The physical thickness of the films was determined by use of a stylus profilometer. The M-H Looper studies indicated that the induced anisotropy (Hk) depends strongly on the nickel concentration as well as on the annealing conditions, specifically the time and temperature of the annealing process. For the same metalloid concentration, the induced anisotropy has a maximum as a function of Ni. For the same nickel concentration and annealing time, it was found that the value of Hk decreases with the increase in annealing temperature. For each composition studied, low temperature long time annealing showed a higher value of Hk compared to high temperature short time annealing. From the magnetostriction values of Fe80-xNixB20 alloys, it was found that the sputter deposited films show similar trend but differ in magnitude when compared with ribbon samples. The magnetostriction of annealed thin films is found to be representative of ribbon samples. A potential composition modification to improve the strength of the field induced anisotropy is the addition of low levels of Mn.
392

Crystal structure and magnetic properties of geometrically frustrated face centered cubic (f.c.c.) double perovskites,La₂LiMO₆ and Ba₂YMO₆ (M= Mo, Re and Ru)

Aharen, Tomoko 09 1900 (has links)
<p> This thesis reports a systematic study of geometrically frustrated f.c.c. double perovskites with both monoclinic (P2₁/n) La₂LiMO₆ and cubic (Fm3m) Ba₂YMO₆ symmetries, where M=Mo (S=1/2), Re (S=1) and Ru (S=3/2). The roles of both the spin quantum number, i.e. quantum spin fluctuations, and the local site symmetry, i.e. orbital ordering, on the determination of the ground magnetic state were studied. All the compounds were prepared by solid state reaction and the structural information and magnetic properties of the compounds were collected using diffraction techniques (X-ray and neutron), de susceptibility, heat capacity, muon spin relaxation (μSR) and solid state NMR. </p> <p> The S=3/2 materials, La₂LiRuO₆ and Ba₂YRuO₆, while highly frustrated with frustration indices f ~ 16 and 8, respectively, both show antiferromagnetic (AF) long range ordering at 24K and 37K, respectively. The Neel temperature of the latter compound was determined for the first time by the heat capacity and neutron diffraction. This compound shows an unusual AF transition as two broader peaks were observed in the susceptibility while La₂LiRuO₆ shows a typical AF behavior. There is about 1 % of Y/Ru site mixing observed by 89Y MAS NMR in Ba₂YRuO₆. </p> <p> For the S=1 materials, monoclinic La₂LiReO₆ shows collective singlet like behavior as zero magnetization was observed in the ZFC susceptibility and a static and diluted spin system was indicated by μSR. On the other hand, the cubic phase, Ba₂YReO₆ surprisingly shows a spin glass behavior confirmed by μSR while no Y/Re site mixing was observed by MAS NMR. It is also a surprising observation that this compound retains cubic symmetry down to 3K where it would have a structure transition subject to the Jahn-Teller theorem. </p> <p> Finally, the S=1/2 compounds, La₂LiMoO₆ and Ba₂YMoO₆, show quite different magnetic behavior. Monoclinic La₂LiMoO₆ shows the presence of at least short range order achieved at 18K according to the heat capacity and μSR measurements. Ba₂YMoO₆ retains cubic symmetry down to 3K and no Jahn-Teller distortion was observed at the limit of the resolution of neutron diffraction. This compound surprisingly appears to remain paramagnetic down to 2K, yet evidence for a collective singlet state was observed by a paramagnetic Knight shift measurement in NMR. This is consistent with an existing theoretical prediction. </p> <p> An extended study on other S=1/2 Mo analogues, Ba₂LuMoO₆ and Ba₂ScMoO₆ is also presented. Both compounds show cubic structure confirmed by X-ray diffraction and paramagnetic behavior down to 2K in the susceptibility. </p> / Thesis / Doctor of Philosophy (PhD)
393

Design and Development of Scanning Eddy Current Force Microscopy for Characterization of Electrical, Magnetic and Ferroelectric Properties with Nanometer Resolution

Nalladega, Vijayaraghava 19 August 2009 (has links)
No description available.
394

Magnetic Characterization of Electrodeposited Nanocrystalline Ni and Ni-Fe alloys

Arabi, Sahar 10 1900 (has links)
<p>This research study has been devoted to the study of magnetic properties and magnetic transport of nanocrystalline Ni and Ni-15% Fe alloys consisting of randomly oriented grains with an average size of 23 and 12 (nm), respectively. The structures of the deposits were confirmed by the XRD analysis using Rietveld refinement technique. The as-deposited Ni and Ni-15%Fe sample was comprised exclusively of the γ phase with lattice parameter of 3.5270 (nm) and 3.5424 (nm), respectively. The small increase in lattice parameter was attributed to the replacement of iron solutes in the Ni sites in lattice. Texture analysis of nanocrystalline Ni and Ni-15%Fe revealed that textures components of both materials is qualitatively the same and vary in terms of volume fraction. Both material showed strong <100> fibre texture with some contribution of the <111> component. The calculated volume fraction of the <100> and <111> components were respectively 17.157% and 3.201% for Ni and, 22.032% and 6.160% for Ni-15%Fe and the rest being confined to the random texture.</p> <p>Magnetic measurements show that all samples exhibit low loss hysteresis loops with high permeabilities. The presence of 15%Fe in Ni leads to enhancement of the saturation magnetization (M<sub>s</sub>) regardless of the direction of the applied field. M<sub>s</sub> shows an increase from 60.169 (emu/gr) in nanocrystalline Ni to 93.67 (emu/gr) in Ni-15%Fe sample at T=2K. No strong temperature–dependence of the magnetization was observed for samples, but the magnetization of the Ni-15%Fe samples at T=2K were slightly higher than that of T=298K. The coercivity values of nanocrystalline Ni-15%Fe were in all cases smaller than that of nanocrystalline Ni samples. Good agreement between random anisotropy model (RAM) theory and experiment for nanocrystalline Ni and Ni-15%Fe samples was observed. The ferromagnetic exchange length (L<sub>ex</sub>) was larger than the average grain size (D) for samples at all times. The effective magnetic anisotropy constants (K<sub>eff</sub>) of the nanocrystalline Ni and Ni-15%Fe alloys were measured using the law of approach to saturation. At T=2K, the K<sub>eff</sub> of Ni-15%Fe samples were measured to be 1.7037´10<sup>5</sup> (erg/cm<sup>3</sup>) and 2.71996 ´10<sup>5</sup> (erg/cm<sup>3</sup>) at field parallel and perpendicular, respectively. These values were almost half of the values obtained for nanocrystalline Ni samples 4.66091´10<sup>5</sup> (erg/cm<sup>3</sup>) and 4.19703´10<sup>5</sup> (erg/cm<sup>3</sup>). Temperature dependence measurements showed that K<sub>eff</sub> constants decrease with increasing temperature. The angular dependence MR studies on nanocrystalline Ni and Ni-15%Fe resulted in a twofold, and a fourfold symmetric behaviour, respectively. The field dependence MR measured at various sample tilt with respect to the applied field, showed various trends from pure positive MR to pure negative MR, which partially could be explained by magnetocrystalline anisotropy of the samples.</p> / Master of Applied Science (MASc)
395

Design, Synthesis and Characterization of Porous Silica Nanoparticles and Application in Intracellular Drug Delivery

Munusamy, Prabhakaran 04 August 2010 (has links)
Nanoparticle mediated drug delivery approaches provide potential opportunities for targeting and killing of intracellular bacteria. Among them, the porous silica nanoparticles deserve special attention due to their multifunctional properties such as high drug loading, controlled drug release and targeting of organs/cells. A review of the functional requirements of an ideal drug delivery system is provided. A general comparison between different drug delivery carriers and key issues to be addressed for intracellular drug delivery is discussed. Acid catalyzed and acid-base catalyzed, sol-gel derived, silica xerogel systems were investigated for sustained release of an aminoglycosides antimicrobial against salmonella infection in a mouse model. The release of gentamicin from the inner hollow part of the carrier is delayed. Further, the higher porosity of the acid–base catalyzed silica xerogel allows for high drug loading compared to the acid catalyzed silica xerogel system. Efficacy of these particles in killing intracellular bacteria (salmonella) was determined by administering three doses of porous silica loaded gentamicin. This proved to be useful in reducing the salmonella in the liver and spleen of infected mice. Furthermore, the presence of silanol groups provides the ability to functionalize the silica xerogel system with organic groups, poly (ethylene glycol) (PEG), to further increase the hydrophilicity of the silica xerogel matrix and to modify the drug release properties. Increase in the hydrophilicity of the matrix allows for faster drug release rate. In order to facilitate controlled drug release, magnetic porous silica xerogels were fabricated by incorporating iron particles within the porous silica. The particles were fabricated using an acid-base catalyzed sol-gel technique. The in-vitro drug release studies confirm that the release rate can be changed by the magnetic field "ON-OFF" mechanism. This novel drug release methodology combined with the property of high drug loading capacity proves to be influential in treating salmonella intracellular bacteria. The potential application of any drug delivery carrier relies on the ability to deliver the requisite drug without adversely affecting the cells over the long term. We have developed silica/calcium nanocomposites and evaluated their solubility behavior. The solubility of particles was characterized by particle size measurements for different periods of time. It was found that the solubility behaviour of the silica/calcium particles was dependent on their calcium content. The results obtained demonstrate the potential to use mesoporous silica/calcium nano-composites for drug delivery applications. The significant contribution of this research to drug delivery technology is on design and development of the novel porous core-shell silica nano-structures. This new core-shell nano-structure combines all the above mentioned properties (high drug loading, magnetic field controlled drug release, and solubility). The main aim of preparing these porous core-shell particles is to have a control over the solubility and drug release property, which is a significant phenomenon, which has not been achieved in any other drug delivery systems. The shell layer acts as a capping agent which dissolves at a controllable rate. The rate at which the shell layer dissolves depends on the composition of the particles. This shell prevents the drug "leakage" from the particles before reaching the target site. The core layer drug loading and release rate was modified by application of a magnetic field. Additionally, inclusion of the calcium ions in the core layer destabilizes the silica network and allows the particles to dissolve at an appropriate rate (which can be controlled by the concentration of the calcium ions). / Ph. D.
396

Molecular Beam Epitaxy Growth and Enhancement of Device Stability for Characterizing Mesoscopic Physics in GaAs/AlGaAs heterostructures

Shuang Liang (19193335) 25 July 2024 (has links)
<p dir="ltr">Improvement in state-of-the-art molecular beam epitaxy has led to the growth of ultra-high-quality GaAs/AlGaAs heterostructures. Two-dimensional electron systems in GaAs/AlGaAs heterostructures have provided a platform for investigating numerous phenomena in condensed matter physics.</p><p dir="ltr">In Chapter 2, we study low-frequency charge noise in shallow GaAs/AlGaAs heterostructures using quantum point contacts as charge sensors. We observe that devices with an Al$_2$O$_33$ dielectric between the metal gates and semiconductor exhibit significantly lower charge noise than devices with only Schottky gates and no dielectric. The improvement in device stability allows the application of shallow structures for spin qubit projects, making gate potential sharply defined.</p><p dir="ltr">In Chapter 3, we investigated the impact of edge-edge interaction on an electronic Fabry-P\'erot interferometer in the quantum Hall regime. Recently, experimental observations of periodicity $\phi_0/2$ in the integer</p><p dir="ltr">quantum Hall regime has been attributed to an exotic electron pairing mechanism. We present measurements of a Fabry-P\'erot interferometer operated in the integer quantum Hall regime at filling factor $1\leq \nu \leq 3$. Like previous experimental reports, under specific conditions we observe oscillations with flux periodicity $\phi_{0}/2$. However, our data and analysis indicate that period-halving is not driven by electron pairing, as has previously been claimed in the literature, but rather, is the result of electrostatic coupling between multiple independent edge modes.</p><p dir="ltr">In Chapter 4, we demonstrated our attempts in realizing stable {\it in-situ} gating for probing the possible non-Abelian state $\nu=5/2$. Utilizing a trench gate technique on a doped AlGaAs sample exhibits reasonable gating in a standard experiment time scale. Introducing AlAs screening wells further enhances the stability; it also significantly improves the coherence of interference at both integer and fractional states. In the future work section, we propose possible heterostructure modifications to improve contact performance, 2DEG quality, and the coherence of the interference.</p>
397

Observation of fractional edge excitations in nanographene spin chains

Mishra, Shantanu, Catarina, Gonçalo, Wu, Fupeng, Ortiz, Ricardo, Jacob, David, Eimre, Kristjan, Ma, Ji, Pignedoli, Carlo A., Feng, Xinliang, Ruffieux, Pascal, Fernández-Rossier, Joaquín, Fasel, Roman 11 November 2024 (has links)
Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect1,2, solitons in one-dimensional conducting polymers3,4 and Majorana states in topological superconductors5. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk6 and, remarkably, S = 1/2 edge states at the chain termini7,8,9, leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order10,11. Here, we use on-surface synthesis12 to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunnelling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated phases in purely organic materials, with the potential for the realization of measurement-based quantum computation13.
398

A neutron diffraction study of the field-induced diamagnetism in the semimetal bismuth.

Collins, Steven Robert. January 1979 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 1979 / Vita. / Includes bibliographical references. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Physics
399

Magnetothermal properties near quantum criticality in the itinerant metamagnet Sr₃Ru₂O₇

Rost, Andreas W. January 2009 (has links)
The search for novel quantum states is a fundamental theme in condensed matter physics. The almost boundless number of possible materials and complexity of the theory of electrons in solids make this both an experimentally and theoretically exciting and challenging research field. Particularly, the concept of quantum criticality resulted in a range of discoveries of novel quantum phases, which can become thermodynamically stable in the vicinity of a second order phase transition at zero temperature due to the existence of quantum critical fluctuations. One of the materials in which a novel quantum phase is believed to form close to a proposed quantum critical point is Sr₃Ru₂O₇. In this quasi-two-dimensional metal, the critical end point of a line of metamagnetic first order phase transitions can be suppressed towards zero temperature, theoretically leading to a quantum critical end point. Before reaching absolute zero, one experimentally observes the formation of an anomalous phase region, which has unusual ‘nematic-like’ transport properties. In this thesis magnetocaloric effect and specific heat measurements are used to systematically study the entropy of Sr₃Ru₂O₇ as a function of both magnetic field and temperature. It is shown that the boundaries of the anomalous phase region are consistent with true thermodynamic equilibrium phase transitions, separating the novel quantum phase from the surrounding ‘normal’ states. The anomalous phase is found to have a higher entropy than the low and high field states as well as a temperature dependence of the specific heat which deviates from standard Fermi liquid predictions. Furthermore, it is shown that the entropy in the surrounding ‘normal’ states increases significantly towards the metamagnetic region. In combination with data from other experiments it is concluded that these changes in entropy are most likely caused by many body effects related to the underlying quantum phase transition.
400

The magnetic properties of superconductors

Lloyd, Sion January 1999 (has links)
No description available.

Page generated in 0.1306 seconds