• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 35
  • 11
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Geomagnetic secular variation as recorded in British lake sediments and its application to archaeomagnetic studies

Clelland, Sarah-Jane, Batt, Catherine M. January 2012 (has links)
Lake sediments can play an important role in understanding and reconstructing temporal characteristics of the geomagnetic field, as they potentially offer near continuous high-resolution archives of magnetic information extending throughout the Holocene. To date lake sediment geomagnetic data has typically been excluded from British archaeomagnetic secular variation curves (SVC) due to uncertainties with the acquisition of magnetisation by lake sediments. This paper presents the argument that, with regards to British datasets, the real problem lies with poor chronological control and sets out to illustrate that with British archaeomagnetic data some progress has been made. The results indicate that it is not currently possible to resolve secular variation on a time scale of ¿100 years from published British lake sediment data but more success has been made with data from archaeological sediments. This level of detail has been considered necessary for the incorporation of lake sediment data into the British archaeomagnetic dataset, as the ability to resolve short-term geomagnetic changes is critical for the integration of any dataset into the British SVC. As the latter is predominantly employed to date archaeological architecture and artefacts requires that it has the ability to resolve changes over timescales relevant to human lifetimes. Using currently available data this retrospective critique confirms that, in archaeological sediments, depositional and thermoremanent magnetisation can record the same direction over the same time interval.
12

Implementation of an Automatic Voltage Regulator for Synchronous Machines on an FPGA

Fjärstedt, Eric January 2019 (has links)
Synchronous generators used for hydro power and nuclear power is a well known topology but there is a vast amount of intricate technologies and methods to making them function properly. This masters thesis covers the development, implementation and verification of a magnetisation system for a synchronous generator. The software implementation is made in the LabVIEW programming environment and uses a high performance CompactRIO with an FPGA for measurements, calculation and output control signals. Together with several peripheral devices, the CompactRIO forms an excitation system and most importantly, an automatic voltage regulator. This system keeps the output voltage of the generator stable and has a variety of safety features such as over excitation limits, under excitation limits and a V/Hz limiter. The resulting system successfully monitors and controls the generator characteristics and the controllers, based on PI controllers, have short rise times, low overshoot and no significant static error. This magnetisation system was verified on a 185 kW synchronous machine and all functions showed satisfying results with the exception of the implemented power system stabiliser which need to be re-tuned.
13

Nouveaux états quantiques induits sous champ : étude microscopique par résonance magnétique nucléaire de l'azurite / New magnetic field induced quantum states : microscopic, Nuclear Magnetic Resonance study of azurite

Aimo, Francesco 24 January 2011 (has links)
Nous présentons une étude par Résonance Magnétique Nucléaire (RMN) de l'azurite, Cu3(CO3)2(OH)2, un système de spins quantiques. Ce composé peut être modélisé comme une chaine quasi-unidimensionnelle, frustrée, ‘de type diamant', de spins électroniques S=1/2 portés par les ions de cuivre Cu2+. Il présente dans sa courbe de l'aimantation en fonction du champ magnétique, entre 11 et 30 T et à très basse température, un plateau à 1/3 de l'aimantation à saturation. Nous avons effectué des mesures RMN du cuivre dans l'azurite à T=1.5 K afin de déterminer sa structure magnétique microscopique. Les résultats obtenus dans le plateau démontrent que le ‘dimère' des deux spins qui sont plus fortement couplés est approximativement dans l'état singulet, tandis que le troisième spin (le ‘monomère') est presque complètement polarisé. Cela confirme que la configuration électronique du plateau à 1/3 est un nouvel état quantique qui n'a pas d'équivalent classique [F. Aimo et al., Phys. Rev. Lett. 102 127205, (2009)]. Par RMN du proton à très haut champ magnétique, entre 31 et 34 T à T=0.6 K, nous avons aussi étudié le passage depuis le plateau à 1/3 vers la polarisation complète du système, afin de confirmer ou infirmer l'existence éventuelle d'un plateau à 2/3. Ce plateau est attendu dans le cas exceptionnel où les corrélations longitudinales de spins sont dominantes et stabilisent un ordre incommensurable longitudinal. L'analyse détaillée du dédoublement très symétrique des spectres RMN nous amène à conclure que c'est un ordre antiferromagnétique transverse et non longitudinal qui est établi, ce qui est incompatible avec l'existence du plateau à 2/3. / We present a Nuclear Magnetic Resonance (NMR) study of azurite, Cu3(CO3)2(OH)2, a quantum spin system. This compound has been recognised as a model system for a quasi-1D, frustrated, ‘diamond' chain of S=1/2 spins beared by Cu2+ ions. In the magnetisation curve as a function of magnetic field it presents, between 11 and 30 T and at very low temperatures, a plateau at 1/3 of the saturation magnetisation. We performed Cu NMR measurements in azurite at T=1.5 K in order to determine its microscopic magnetic structure. The obtained results show that the ‘dimer' of two more strongly coupled spins is approximately in a singlet state while the third spin (the ‘monomer') is almost fully polarised. This confirms that the electronic configuration of the 1/3 plateau is a new quantum state without classical analogue [F. Aimo et al., Phys. Rev. Lett. 102, 127205, (2009)]. By very high magnetic field proton NMR, between 31 and 34 T and at T=0.6 K, we have also studied the transition region between the 1/3 plateau and the full polarisation of the system in order to test for the possible existence of a 2/3 plateau. This plateau is expected in rather exceptional case when longitudinal spin correlations are dominant and stabilise an incommensurable longitudinal order. However, our analysis showed that the symmetric splitting of NMR spectra corresponds to an antiferromagnetic transverse and not longitudinal order, which is incompatible with the existence of a 2/3 plateau.
14

Numerical simulation of magnetic nanoparticles

Kovacs, Endre January 2005 (has links)
We solved the Landau-Lifshitz equations numerically to examine the time development of a system of magnetic particles. Constant or periodical external magnetic field has been applied. First, the system has been studied without dissipation. Local energy excitations (breathers) and chaotic transients have been found. The behaviour of the system and the final configurations can strongly depend on the initial conditions, and the strength of the external field at an earlier time. We observed some sudden switching between two remarkably different states. Series of bifurcations have been found. When a weak Gilbert-damping has been taken into account, interesting behaviour has been found even in the case of one particle as well: bifurcation series and period multiplication leading to chaos. For a system of antiferromagnetically coupled particles, highly nontrivial hysteresis loops have been produced. The dynamics of the magnetization reversal has been investigated and the characteristic time-scale of the reversal has been estimated. For more particles, the energy spectrum and the magnetization of the system exhibits fractal characteristics for increasing system size. Finally, energy have been pumped into the system in addition to the dissipation. For constant field, complicated phase diagrams have been produced. For microwave field, it has been found that the chaotic behaviour crucially depends on the parity of the number of the particles.
15

Characterisation of the mechanisms of magnetisation change in permanent magnet materials through the interpretation of hysteresis measurements

Harrison, Simon Andrew January 2004 (has links)
The mechanisms by which magnetisation changes occur in magnetic materials may be investigated by a variety of hysteresis measurements. During this study both alternating and rotational hysteresis measurements were used to characterise the mechanisms of magnetisation change in a number of permanent magnet materials. Studies of the time dependence of magnetisation, remanent magnetisations and the dependence of the reversible magnetisation on the irreversible magnetisation were undertaken. These studies revealed that in sintered rare-earth iron magnets the magnetisation change is predominately controlled by domain nucleation, with a lesser contribution from domain wall pinning within the boundary regions of the grains. Similar mechanisms control the magnetisation change in the larger grains of melt-quenched rare-earth iron magnets. In the single domain grains of the melt-quenched materials incoherent rotation mechanisms control the changes of magnetisation. Magnetisation change in MnAlC and sintered AlNiCo was found to be controlled by domain wall pinning within the interior of the grains of the materials. Two devices were constructed for the measurement of rotational hysteresis. The first measures the angular acceleration of a sample set spinning in a magnetic field, from which the rotational hysteresis loss may be determined. The second employs rotating search coils to make direct measurements of the component of magnetisation that contributes to rotational hysteresis loss during the rotation of a sample in a field. Both devices were found to produce data consistent with that in the literature and to be useful for the characterisation of rotational hysteresis in permanent magnet materials. A simple model was used to examine the dependence of rotational hysteresis loss on various material parameters. It was found that the value of the rotational hysteresis integral is dependent on interactions and to a lesser extent distributions in anisotropy. This is contrary to assumptions commonly made in the literature but consistent with published experimental data, which has been reinterpreted. Measurements of rotational hysteresis losses in the materials studied were found to be effected by geometric demagnetisation effects. A method by which such data may be corrected for these effects is proposed. Following correction and consideration of the interactions within the materials, the rotational hysteresis data was found to be consistent with the characterisations performed in linearly alternating fields.
16

Magnetisation, Phases & Phase Transitions in Frustrated and Unfrustrated XY Model

Maji, Maheswar January 2011 (has links) (PDF)
Through our whole work we study the XY model with all its entirety, a particular spin model where spins are confined in a plane. We try to bring out a good understanding of this model with all different types of phases and phase transition, it undergoes in critical situations. We conceive of these external conditions from very different physical models like High Tc Superconductor, Ultracold atoms in optical lattice which are in focus of recent research. Firstly we model high Tc Superconductors with very simple 2D XY model to get an idea about the diamagnetic response exhibited by these materials when kept in a external magnetic field. This modeling is reasonable because most of the physics of cuprate High Tc Superconductors are governed by their 2D copper oxide planes which insists us to consider 2D models. Later we shifted to a more realistic 3D anisotropic XY model , as the coupling between cuprates plane may have a considerable role in devising physics of those materials. We particularly focus on the 2D to 3D crossover effect on magnetisation showed by these models, with keeping an eye on how all these can be relate to the experimentally acquired magnetisation profile of High Tc Supercondutors. On the second project we investigate on the phase diagram of a fully frustrated 2-leg ladder Bose Hubbard model. After mapping it properly to a classical model, a bi-layer Fully Frustrated XY model on square lattice, we found that the frustration leads to the emergence of a new phase "Chiral Mott insulator(CMI)" sandwiched between "Chiral Superfluid(CSF)" and "regular Mott insulator(MI)" phase. We divide the whole report into four parts. The first chapter is basically contain-ing introductory part comprising the motivation. In the second chapter we discuss various types of phases and phase transitions of the 2D & 3D XY models. We try to address their critical behaviors. In the third chapter and onwards we consider our model in external magnetic field and observe magnetisation in these systems. Here we specially focus on 2D to 3D crossover effect on magtisation measurement. Lastly in the fourth chapter we bring out a correspondence of XY model with the 2 leg ladder fully frustrated Bose Hubbard Model. There we report the emergence of a new phase, Chiral Mott Insulator(CMI) due to frustration in system.
17

Low temperature magnetisation properties of the spin ice material Dy₂Ti₂O₇

Slobinsky, Demian G. January 2012 (has links)
A way to obtain materials that show novel phenomena is to explore the interplay between geometry and interactions. When it is not geometrically possible to satisfy all the interactions by a given configuration, then to find the ground state becomes very complicated. This interplay between geometry and interactions defines geometrical frustration. One of the most popular examples of geometrical frustration in magnetism is spin ice. In this system, nearest neighbour ferromagnetic interactions between Ising spins in a pyrochlore structure emulate water ice by showing the same degree of frustration. This is manifested by the same ground state residual entropy. Although the clearest example of spin ice among magnets is shown by Dy₂Ti₂O₇, the behaviour of this material is richer than that of pure spin ice. The large magnetic moments of the rare earth Dy form a spin ice that also interacts via dipolar interactions. These long range interactions give rise to monopolar excitations which dramatically affect the dynamics of the system with respect to the pure spin ice case. In this thesis magnetisation experiments and numerical methods are used to explore the properties of the magnetic insulator Dy₂Ti₂O₇. We study its excitations at low temperature and describe the out-of-equilibrium characteristics of the magnetisation processes, below a temperature where the system freezes out. For temperatures above the freezing temperature, we describe and measure a 3D Kasteleyn transition and the concomitant Dirac strings associated to it, for the field in the [100] crystallographic direction. For temperatures below the freezing temperature, we find new out-of-equilibrium phenomena. Magnetic jumps are measured and their sweep rate dependence analysed. A deflagration theory is proposed and supported by simultaneous magnetisation and sample temperature measurements obtained by a new design of a Faraday magnetometer.
18

Molecular Diagnostics Using Volume-Amplified Magnetic Nanobeads : Towards the Development of a Novel Biosensor System

Strömberg, Mattias January 2009 (has links)
Micro- or nanometer sized magnetic particles (beads) currently have a vast range of life science applications in, for example, bioseparation techniques, cancer therapy, development of contrast agents and biosensing techniques. In the latter field, magnetic beads offer several unique advantages, including minimal background signals, physical and chemical stability and low manufacturing costs. Because of these properties, magnetic biosensing techniques are potential candidates for low-cost, easy-to-use molecular diagnostic devices. This doctoral thesis focuses mainly on the proof of principle and further development of a new magnetic biosensor platform for detection of DNA targets, a potential candidate for a new generation of low-cost, easy-to-use diagnostic devices: the Volume-Amplified Magnetic Nanobead Detection Assay (VAM-NDA). The VAM-NDA principle combines target recognition by padlock probe ligation followed by rolling circle amplification (RCA) of the reacted probes with changes in Brownian relaxation behaviour of magnetic nanobeads (typically ~100 nm in diameter) induced by a change in hydrodynamic bead volume. More specifically, the RCA products (coils, typically ~1 μm in diameter) are detected magnetically by adding magnetic beads tagged with detection probes complementary to part of the repeating RCA-coil sequence. Thus, depending on the target concentration, a certain quantity of beads binds to the coils by base-pair hybridisation (bead immobilisation), resulting in a dramatic bead volume increase, which is then detected by measuring the complex magnetisation spectrum. Use of a commercial SQUID magnetometer for measuring complex magnetisation resulted in a detection limit in the low pM range for DNA targets with excellent quantification accuracy. Simultaneous multiplexing was also evaluated. The stability and aging of typical commercial ferrofluids (suspensions of magnetic beads) were investigated by measuring the complex magnetisation of and interbead interactions in oligonucleotide-functionalised ferrofluids. In summary, the bead surface characteristics were found to have a strong impact on the measured dynamic magnetic properties.
19

Quantum Spin Chains And Luttinger Liquids With Junctions : Analytical And Numerical Studies

Ravi Chandra, V 07 1900 (has links)
We present in this thesis a series of studies on the physical properties of some one dimensional systems. In particular we study the low energy properties of various spin chains and a junction of Luttinger wires. For spin chains we specifically look at the role of perturbations like frustrating interactions and dimerisation in a nearest neighbour chain and the formation of magnetisation plateaus in two kinds of models; one purely theoretical and the other motivated by experiments. In our second subject of interest we study using a renormalisation group analysis the effect of spin dependent scattering at a junction of Luttinger wires. We look at the physical effects caused by the interplay of electronic interactions in the wires and the scattering processes at the junction. The thesis begins with an introductory chapter which gives a brief glimpse of the ideas and techniques used in the specific problems that we have worked on. Our work on these problems is then described in detail in chapters 25. We now present a brief summary of each of those chapters. In the second chapter we look at the ground state phase diagram of the mixed-spin sawtooth chain, i.e a system where the spins along the baseline are allowed to be different from the spins on the vertices. The spins S1 along the baseline interact with a coupling strength J1(> 0). The coupling of the spins on the vertex (S2) to the baseline spins has a strength J2. We study the phase diagram as a function of J2/J1 [1]. The model exhibits a rich variety of phases which we study using spinwave theory, exact diagonalisation and a semi-numerical perturbation theory leading to an effective Hamiltonian. The spinwave theory predicts a transition from a spiral state to a ferrimagnetic state at J2S2/2J1S1 = 1 as J2/J1 is increased. The spectrum has two branches one of which is gapless and dispersionless (at the linear order) in the spiral phase. This arises because of the infinite degeneracy of classical ground states in that phase. Numerically, we study the system using exact diagonalisation of up to 12 unit cells and S1 = 1 and S2 =1/2. We look at the variation of ground state energy, gap to the lowest excitations, and the relevant spin correlation functions in the model. This unearths a richer phase diagram than the spinwave calculation. Apart from revealing a possibility of the presence of more than one kind of spiral phases, numerical results tell us about a very interesting phase for small J2. The spin correlation function (for the spin1/2s) in this region have a property that the nextnearest-neighbour correlations are much larger than the nearest neighbour correlations. We call this phase the NNNAFM (nextnearest neighbour antiferromagnet) phase and provide an understanding of this phase by deriving an effective Hamiltonian between the spin1/2s. We also show the existence of macroscopic magnetisation jumps in the model when one looks at the system close to saturation fields. The third chapter is concerned with the formation of magnetisation plateaus in two different spin models. We show how in one model the plateaus arise because of the competition between two coupling constants, and in the other because of purely geometrical effects. In the first problem we propose [2] a class of spin Hamiltonians which include as special cases several known systems. The class of models is defined on a bipartite lattice in arbitrary dimensions and for any spin. The simplest manifestation of such models in one dimension corresponds to a ladder system with diagonal couplings (which are of the same strength as the leg couplings). The physical properties of the model are determined by the combined effects of the competition between the ”rung” coupling (J’ )and the ”leg/diagonal” coupling (J ) and the magnetic field. We show that our model can be solved exactly in a substantial region of the parameter space (J’ > 2J ) and we demonstrate the existence of magnetisation plateaus in the solvable regime. Also, by making reasonable assumptions about the spectrum in the region where we cannot solve the model exactly, we prove the existence of first order phase transitions on a plateau where the sublattice magnetisations change abruptly. We numerically investigate the ladder system mentioned above (for spin1) to confirm all our analytical predictions and present a phase diagram in the J’/J - B plane, quite a few of whose features we expect to be generically valid for all higher spins. In the second problem concerning plateaus (also discussed in chapter 3) we study the properties of a compound synthesised experimentally [3]. The essential feature of the structure of this compound which gives rise to its physical properties is the presence of two kinds of spin1/2 objects alternating with each other on a helix. One kind has an axis of anisotropy at an inclination to the helical axis (which essentially makes it an Ising spin) whereas the other is an isotropic spin1/2 object. These two spin1/2 objects interact with each other but not with their own kind. Experimentally, it was observed that in a magnetic field this material exhibits magnetisation plateaus one of which is at 1/3rd of the saturation magnetisation value. These plateaus appear when the field is along the direction of the helical axis but disappear when the field is perpendicular to that axis. The model being used for the material prior to our work could not explain the existence of these plateaus. In our work we propose a simple modification in the model Hamiltonian which is able to qualitatively explain the presence of the plateaus. We show that the existence of the plateaus can be explained using a periodic variation of the angles of inclination of the easy axes of the anisotropic spins. The experimental temperature and the fields are much lower than the magnetic coupling strength. Because of this quite a lot of the properties of the system can be studied analytically using transfer matrix methods for an effective theory involving only the anisotropic spins. Apart from the plateaus we study using this modified model other physical quantities like the specific heat, susceptibility and the entropy. We demonstrate the existence of finite entropy per spin at low temperatures for some values of the magnetic field. In chapter 4 we investigate the longstanding problem of locating the gapless points of a dimerised spin chain as the strength of dimerisation is varied. It is known that generalising Haldane’s field theoretic analysis to dimerised spin chains correctly predicts the number of the gapless points but not the exact locations (which have determined numerically for a few low values of spins). We investigate the problem of locating those points using a dimerised spin chain Hamiltonian with a ”twisted” boundary condition [4]. For a periodic chain, this ”twist” consists simply of a local rotation about the zaxis which renders the xx and yy terms on one bond negative. Such a boundary condition has been used earlier for numerical work whereby one can find the gapless points by studying the crossing points of ground states of finite chains (with the above twist) in different parity sectors (parity sectors are defined by the reflection symmetry about the twisted bond). We study the twisted Hamiltonian using two analytical methods. The modified boundary condition reduces the degeneracy of classical ground states of the chain and we get only two N´eel states as classical ground states. We use this property to identify the gapless points as points where the tunneling amplitude between these two ground states goes to zero. While one of our calculations just reproduces the results of previous field theoretic treatments, our second analytical treatment gives a direct expression for the gapless points as roots of a polynomial equation in the dimerisation parameter. This approach is found to be more accurate. We compare the two methods with the numerical method mentioned above and present results for various spin values. In the final chapter we present a study of the physics of a junction of Luttinger wires (quantum wires) with both scalar and spin scattering at the junction ([5],[6]). Earlier studies have investigated special cases of this system. The systems studied were two wire junctions with either a fully transmitting scattering matrix or one corresponding to disconnected wires. We extend the study to a junction of N wires with an arbitrary scattering matrix and a spin impurity at the junction. We study the RG flows of the Kondo coupling of the impurity spin to the electrons treating the electronic interactions and the Kondo coupling perturbatively. We analyse the various fixed points for the specific case of three wires. We find a general tendency to flow towards strong coupling when all the matrix elements of the Kondo coupling are positive at small length scales. We analyse one of the strong coupling fixed points, namely that of the maximally transmitting scattering matrix, using a 1/J perturbation theory and we find at large length scales a fixed point of disconnected wires with a vanishing Kondo coupling. In this way we obtain a picture of the RG at both short and long length scales. Also, we analyse all the fixed points using lattice models to gain an understanding of the RG flows in terms of specific couplings on the lattice. Finally, we use to bosonisation to study one particular case of scattering (the disconnected wires) in the presence of strong interactions and find that sufficiently strong interactions can stabilise a multichannel fixed point which is unstable in the weak interaction limit.
20

Propriétés structurales et magnétiques de composés intermétalliques à base de terres rares, cobalt et métalloïdes / Structural and magnetic properties of intermetallic compounds based on rare earths, cobalt and metalloids

Laslo, Ancuta-Ioana 19 December 2013 (has links)
Dans cette thèse nous avons évalué l'effet de la substitution partielle du cobalt par des éléments non-magnétiques de type p (M) sur les propriétés structurales et magnétiques des composés RCo5. Les échantillons ont été synthétisées par fusion dans un four à induction, puis caractérisés en utilisant des nombreuses techniques expérimentales: diffraction de rayons X et de neutrons, microscopie électronique à balayage, magnétométrie, susceptométrie en courant alternatif et spectroscopie photoélectronique par rayons X.Tous les composés de type RCo5-xMx (R= Pr, Sm, Tb, Er et Tm; M= Si, Ge, Al, Ga; x=0,5 et x=1) étudiés gardent la structure cristalline de type CaCu5 des composés de départ RCo5, mais les paramètres de la maille cristalline sont modifiés par la présence des éléments M. Le domaine de stabilité thermique des phases RCo5-xMx est notablement modifié par la présence d'élément métalloïde en substitution sur les sites du cobalt. Il peut être étendu pour Al et Ga et réduit pour Si et Ge. Les atomes de l'élément M sont localisés préférentiellement sur le site cristallographique Co 3g. La solubilité des éléments Ge et Si dans la structure RCo5 est trouvée être inférieure à celle des métalloïdes ayant un électron de moins tels que Al et Ga.La substitution M/Co a une influence importante sur les propriétés magnétiques des composés RCo5. La température d'ordre et l'aimantation spontanée diminuent significativement après le remplacement partiel du cobalt par l'élément métalloïde. Ces modifications sont induites par l'évolution des interactions d'échange en particulier Co-Co mais aussi par la réduction de l'aimantation du Co liée à sa sensibilité au voisinage atomique et magnétique local. La direction de facile aimantation à la température ambiante est préservée le long de l'axe cristallographique c pour tous les échantillons étudiés. Dans quelques composés RCo5-xMx (R = Sm, Er et Tm) la substitution de M au cobalt change le mécanisme de coercitivité par rapport aux composés de départ RCo5. Une coercitivité élevée a été détectée à basse température, surtout pour les composés SmCo4Al et SmCo4Ga, qui présentent aussi des champs d'anisotropie énormes, bien supérieurs à ceux de phase SmCo5.Les expériences XPS sur les composés de type RCo5-xMx ont détecté la réduction de la densité d'états électroniques au niveau de Fermi par rapport aux composés de type RCo5. La bande 3d du cobalt est remplie lors de la substitution M/Co et conduit à un moment magnétique du cobalt réduit. / In this work we have evaluated the effect of the partial substitution of cobalt with non-magnetic p-type elements (M) on the structural and magnetic properties of RCo5 compounds. The samples were prepared by alloying in an induction furnace and were characterized using various experimental techniques: X-ray and neutron diffraction, scanning electron microscopy, magnetometry, AC susceptometry and X-ray photoelectron spectroscopy.All of the studied RCo5-xMx compounds (R=Pr, Sm, Tb, Er and Tm; M=Si, Ge, Al and Ga; x=0.5 and x=1) maintain the CaCu5 crystal structure of the RCo5 compounds, however the lattice parameters are modified due to the presence of M elements. The thermal stability range of the RCo5-xMx phases is modified significantly due to the Co site substitutions. The thermal stability increases for Al and Ga substitutions and decreases when M is Si or Ge. The M atoms were found to preferentially occupy the Co 3g site. The solubility of Ge and Si in the RCo5 structure is inferior to that of metalloid elements with one less electron, such as Al and Ga. The M/Co substitution has an important influence on the magnetic properties of RCo5 compounds. The ordering temperature and the spontaneous magnetization are significantly reduced after the partial substitution of cobalt by the metalloid elements. These changes are induced in particular by the evolutions of the Co-Co exchange interactions and also by the reduction of the Co magnetization due to the sensitivity of Co to the local atomic and magnetic vicinity. The easy magnetization direction at room temperature is preserved along the c-axis for all of the studied samples. In several RCo5-xMx (R = Sm, Er and Tm) compounds the substitution of Co with M atoms changes the coercivity mechanism compared to RCo5. A higher coercivity was found at low temperatures, especially for SmCo4Al and SmCo4Ga compounds, which also show huge values of the anisotropy field, well above the ones found in SmCo5.The XPS measurements on RCo5-xMx compounds show a reduction of the density of states at the Fermi level compared to the RCo5 compounds. There is a filling of the Co 3d band following the M/Co substitution, leading to a lower Co moment.

Page generated in 0.1354 seconds