• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Suszeptibilitätseffekte in der Kernspinresonanzbildgebung / Susceptibility effects in nuclear magnetic resonance imaging

Ziener, Christian H. January 2008 (has links) (PDF)
Das Dephasierungsverhalten und die daraus resultierende Relaxation der Magnetisierung sind Grundlage aller auf der Kernspinresonanz basierenden bildgebenden Verfahren. Das erhaltene Signalder präzedierenden Protonen wird wesentlich von den Eigenschaften des untersuchten Gewebes bestimmt. Insbesondere die durch magnetisierte Stoffe wie z. B. desoxygeniertes Blut (BOLD-Effekt) oder magnetische Nanopartikel erzeugten Suszeptibilitätssprünge gewinnen zunehmend Bedeutung in der biomedizinischen Bildgebung. In der vorliegenden Arbeit wurden die Einflüsse von Feldinhomogenitäten auf das NMR-Signal untersucht. / The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed.
2

New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical Properties / Neue Entwicklungen in Nitridometallaten und Cyanamiden: chemische, strukturelle und physikalische Eigenschaften

Bendyna, Joanna 30 November 2009 (has links) (PDF)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA). Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2. In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure. The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed. Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished. Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2]. Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2]. The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge. The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed. Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details. Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized. Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
3

Entwicklung eines quantitativen Verfahrens zur Streufeld- und Magnetisierungsbestimmung magnetischer Strukturen / Development of a quantitative method for the determination of the stray field and the magnetization of magnetic structures

Dreyer, Sebastian 03 July 2007 (has links)
No description available.
4

New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical Properties

Bendyna, Joanna 30 October 2009 (has links)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA). Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2. In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure. The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed. Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished. Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2]. Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2]. The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge. The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed. Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details. Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized. Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
5

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 28 October 2014 (has links) (PDF)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
6

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 07 October 2014 (has links)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.

Page generated in 0.1496 seconds