• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • Tagged with
  • 14
  • 14
  • 14
  • 12
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Element-resolved ultrafast magnetization dynamics in ferromagnetic alloys and multilayers

Eschenlohr, Andrea January 2012 (has links)
The microscopic origin of ultrafast demagnetization, i.e. the quenching of the magnetization of a ferromagnetic metal on a sub-picosecond timescale after laser excitation, is still only incompletely understood, despite a large body of experimental and theoretical work performed since the discovery of the effect more than 15 years ago. Time- and element-resolved x-ray magnetic circular dichroism measurements can provide insight into the microscopic processes behind ultrafast demagnetization as well as its dependence on materials properties. Using the BESSY II Femtoslicing facility, a storage ring based source of 100 fs short soft x-ray pulses, ultrafast magnetization dynamics of ferromagnetic NiFe and GdTb alloys as well as a Au/Ni layered structure were investigated in laser pump – x-ray probe experiments. After laser excitation, the constituents of Ni50Fe50 and Ni80Fe20 exhibit distinctly different time constants of demagnetization, leading to decoupled dynamics, despite the strong exchange interaction that couples the Ni and Fe sublattices under equilibrium conditions. Furthermore, the time constants of demagnetization for Ni and Fe are different in Ni50Fe50 and Ni80Fe20, and also different from the values for the respective pure elements. These variations are explained by taking the magnetic moments of the Ni and Fe sublattices, which are changed from the pure element values due to alloying, as well as the strength of the intersublattice exchange interaction into account. GdTb exhibits demagnetization in two steps, typical for rare earths. The time constant of the second, slower magnetization decay was previously linked to the strength of spin-lattice coupling in pure Gd and Tb, with the stronger, direct spin-lattice coupling in Tb leading to a faster demagnetization. In GdTb, the demagnetization of Gd follows Tb on all timescales. This is due to the opening of an additional channel for the dissipation of spin angular momentum to the lattice, since Gd magnetic moments in the alloy are coupled via indirect exchange interaction to neighboring Tb magnetic moments, which are in turn strongly coupled to the lattice. Time-resolved measurements of the ultrafast demagnetization of a Ni layer buried under a Au cap layer, thick enough to absorb nearly all of the incident pump laser light, showed a somewhat slower but still sub-picosecond demagnetization of the buried Ni layer in Au/Ni compared to a Ni reference sample. Supported by simulations, I conclude that demagnetization can thus be induced by transport of hot electrons excited in the Au layer into the Ni layer, without the need for direct interaction between photons and spins. / Der mikroskopische Ursprung der ultraschnellen Entmagnetisierung, d.h. des Rückgangs der Magnetisierung eines ferromagnetischen Metalls innerhalb einer Pikosekunde nach Laseranregung, ist bisher nur unvollständig verstanden, trotz umfangreicher experimenteller und theoretischer Arbeiten, die seit der Entdeckung des Effekts vor mehr als 15 Jahren durchgeführt wurden. Zeit- und elementaufgelöster Röntgenzirkulardichroismus kann Einblick in die mikroskopischen Prozesse hinter der ultraschnellen Entmagnetisierung sowie deren Materialabhängigkeit gewähren. Am BESSY II Femtoslicing, einer speicherringbasierten Quelle für 100 fs kurze Röntgenpulse, wurde ultraschnelle Magnetisierungsdynamik von ferromagnetischen NiFe- und GdTb-Legierungen sowie einer Au/Ni-Schichtstruktur in Anregungs-Abfrage-Experimenten untersucht. Nach Laseranregung zeigen die Konstituenten von Ni50Fe50 und Ni80Fe20 deutlich unterscheidbares Verhalten und damit entkoppelte Dynamik, trotz starker Austauschkopplung der Ni- und Fe-Untergitter im Gleichgewichtszustand. Weiterhin variieren die Werte der Zeitkonstanten der Entmagnetisierung von Ni und Fe für Ni50Fe50 und Ni80Fe20, und auch für die jeweiligen reinen Elemente. Diese Unterschiede werden durch die magnetischen Momente der Untergitter erklärt, die sich in den Legierungen gegenüber den reinen Elementen ändern, sowie durch die Stärke der Austauschkopplung zwischen den Untergittern. GdTb zeigt Entmagnetisierung in zwei Stufen, was typisch für Seltene Erden ist. Die Zeitkonstante der langsameren zweiten Stufe wurde kürzlich mit der Stärke der Spin-Gitter-Kopplung in reinem Gd und Tb in Verbindung gebracht, wobei die stärkere, direkte Spin-Gitter-Kopplung in Tb zu schnellerer Entmagnetisierung führt. In GdTb folgt die Entmagnetisierung von Gd auf allen Zeitskalen der von Tb. Dies beruht auf einer verstärkten Kopplung der magnetischen Momente von Gd an das Gitter, über die indirekte Austauschkopplung an die Tb-Momente. Dadurch kann Spindrehimpuls schneller an das Gitter abfließen. Zeitaufgelöste Messungen der Entmagnetisierung einer Ni-Schicht unter einer Au-Deckschicht, deren Dicke ausreichend ist um den anregenden Laserpuls praktisch vollständig zu absorbieren, zeigen eine leicht verzögerte aber trotzdem ultraschnelle Entmagnetisierung im Vergleich mit einer Ni-Referenzprobe. Unterstützt durch Simulationen zeigt sich, dass Entmagnetisierung durch den Transport heißer Elektronen von der Au-Deckschicht in die Ni-Schicht ausgelöst wird, ohne dass direkte Wechselwirkung zwischen Photonen und Spins notwendig ist.
2

High Frequency Behaviour of Magnetic Thin Film Elements for Microelectronics

Chumakov, Dmytro 13 March 2007 (has links) (PDF)
Magnetismus ist ein Phänomen, das eine wichtige Rolle in einer Vielfalt technischer Anwendungen spielt. Ohne den Einsatz magnetischer Effekte und Materialen wäre der heutzutage erreichte technische Fortschritt unmöglich, da viele grundlegende Techniken wie Stromerzeugung, elektrischer Antrieb, Informationsübertragung und viele andere auf magnetische bzw. elektromagnetische Phänomene zurückzuführen sind. Dabei haben die ferromagnetischen Materialen stets zur Effizienz von elektrischen und elektronischen Anwendungen beigetragen, weswegen an diesen Materialen auch entsprechend viel geforscht worden ist. Moderne Technologien, insb. Massenspeicher basieren oft auf Ferromagneten und erfordern daher die weitere Erforschung und Anpassung ihrer Eigenschaften. Für die Funktionalität von Hochgeschwindigkeitsgeräten spielt das dynamische Verhalten dünner magnetischer Schichten eine kritische Rolle. In dieser Arbeit wird die Magnetisierungsdynamik dünner Schichtelemente mittels zeitaufgelöster Weitfeld- Kerrmikroskopie untersucht. Dies ist ein aktuelles Thema, an dem in den letzten Jahren sehr intensiv gearbeitet wird. Allerdings sind viele für die Anwendungen sehr wichtige Details des magnetischen Schaltens wegen ihre Vielfältigkeit und Komplexität doch nicht vollständig untersucht und verstanden. In dieser Arbeit werden überwiegend experimentelle Ergebnisse vorgestellt, die einen zusätzlichen Beitrag zum aktuellen Wissenstand leisten. In einem ferromagnetischen Körper bilden sich Bereiche mit spontaner Magnetisierung, die man als Domänen bezeichnet. Die spontane Magnetisierung entsteht aufgrund der Spin-Spin Wechselwirkung, und die Domänen bilden sich aufgrund der Energieminimierung des magnetisierten Körpers. Langsame Magnetisierungsprozesse werden im Wesentlichen getragen von Domänenumordnungen und Domänengrenzenverschiebungen. Solche Prozesse bezeichnet man als quasistatisch, da sich der Körper durch deren Langsamkeit immer im Gleichgewicht oder zumindest sehr nahe daran befindet. Mit zunehmender Anregungsgeschwindigkeit gilt diese Annahme nicht mehr, da die Präzessionsbewegung der magnetischen Momente das Schaltverhalten in diesem Fall definiert. Die Untersuchung der Magnetisierungsdynamik setzt die Möglichkeit voraus, nicht-unterbrochene Prozesse beobachten zu können. Dieses Ziel kann mittels stroboskopischer Abbildung erreicht werden. Dabei wird derselbe Prozess kontinuierlich wiederholt (vorausgesetzt, dass die Prozesse sich reproduzierbar wiederholen lassen), und zu definierten Zeitpunkten werden die entsprechenden Kerraufnahmen gemacht. Dafür wird eine CCD Kamera mit einem Photoverstärker benutzt, welcher als optischer Schalter fungiert. Die Zeitauflösung dieses Systems und damit auch das Vermögen, die Hochfrequenzvorgänge abzubilden, beträgt 250 ps. Die Eigenschaften des magnetischen Umschaltens hängen stark von der Elementgeometrie ab. Diese Unterschiede sind auf unterschiedliche Entmagnetisierungsfaktoren, und damit auf Unterschiede in den effektiven Feldern zurückzuführen. Solche Unterschiede werden auf zwei Weisen initiiert: ein quadratisches Element wird entlang unterschiedlicher Richtungen (entlang der Seite und der Diagonalen) angeregt; die Form des Elementes wird zwischen Quadrat und Rechteck mit unterschiedlichen Seitenverhältnissen variiert. Die beobachteten Schaltvorgänge werden miteinander verglichen und die Ergebnisse dargestellt. Dabei werden auch die dynamischen Vorgänge immer mit den quasistatischen verglichen. Aus dem Vergleich folgt, dass ein steigendes Seitenverhältnis zur geringeren Schaltgeschwindigkeit führt, und dass die dabei entstehenden Domänen zunehmend komplexer werden. Dabei gibt es wesentliche Unterschiede zwischen den dynamischen und quasistatischen Domänen, vor allem in der Domänenwandstruktur. Das Schalten an sich unterscheidet sich auch sehr stark. Quasistatisches Schalten erfolgt überwiegend durch Domänenwandbewegung, während das dynamische Schalten durch inkohärente Rotation der Magnetisierung im ganzen Element erfolgt. Das Hochfrequenzverhalten am Prototypen eines Mikroinduktors wird untersucht. Der Induktor besteht aus vielen magnetischen Elementen, die eine induzierte uniaxiale Anisotropie besitzen. Diese ist bei der Hälfte der Elemente entlang des Magnetfeldes, und bei der anderen Hälfte senkrecht zum Magnetfeld der Spule ausgerichtet. Das dynamische Verhalten der beiden Elementtypen unterscheidet sich stark, vor allem die Ummagnetisierungsgeschwindigkeit. Diese Unterschiede können zu einer Phasenverschiebung im elektrischen Signal führen, was die Effizienz des Induktors senkt. Durch die Untersuchung der Magnetisierungsdynamik in Wechselfeldern unterschiedlicher Frequenz ist auch festgestellt worden, dass bis 100 MHz die Magnetisierungsvorgänge überwiegend durch Domänenwandbewegung erfolgen, während ab 200 MHz- Rotationsprozesse stattfinden.
3

Spin Waves: The Transition from a Thin Film to a Full Magnonic Crystal

Langer, Manuel 23 October 2017 (has links) (PDF)
The present work addresses in-depth magnetic films with magnonic surface patterning of variable size. Two different kinds of such structures referred to as surface-modulated magnonic crystals were investigated: Ion-irradiated magnonic crystals and structurally etched magnonic crystals. To achieve that, two different experimental approaches were pursued. On the one hand, the magnetic moment at the surface of lithographically patterned permalloy (Ni80Fe20) films was periodically reduced by means of ion irradiation. On the other hand, structural trenches were introduced at the surface of a pre-patterned thin film by sequential ion milling. The goal is the acquisition of a fundamental understanding of the behavior of spin-wave modes in the transition from a continuous magnetic thin film to a full magnonic crystal, i.e. separated periodic magnetic structures. In the framework of this thesis, the spin-wave eigen-modes of such magnonic crystals were mainly investigated spectroscopically by means of ferromagnetic resonance. Thereby, the “Two-magnon scattering perturbation theory” and the “plane-wave method” were employed as the theoretical methodologies to understand the complex dynamics of such systems. The first is a reliable method to calculate the dynamic response of surface-modulated magnonic crystals where the modulation is of a perturbation character, i.e. small compared to the film thickness. The latter is a quasi-analytical approach to calculate the dynamic eigen-modes of magnonic crystals consisting of different components with significantly varying properties. Moreover, numerical methods were employed to get further insight into the spin dynamics of these structures. In such systems, the spin-wave behavior follows the well-known dispersion relation of flat magnetic thin films as long as the surface-modulation is small compared to the film thickness. In this work, it was shown that this circumstance can be exploited for a parameter-free determination of the exchange constant A, which is not experimentally accessible for magnetic thin films in a straightforward manner. However, once the modulation height is of significant magnitude, the dynamics of surface-modulated magnonic crystals become substantially more complex. A straightforward understanding of such kind of system is hampered by the complex interplay of different effects. On the one hand, the internal demagnetizing field reveals an alternating character and depends itself on the modulation height and the field angle. On the other hand, the dynamic eigen-modes are hybridized, i.e., they reveal different characteristics in different regions of the magnonic crystal and, in addition, they couple to each other. Here, the approach is particularly favorable to investigate the spin dynamics of surface-modulated magnonic crystals by systematically altering the modulation height of the same sample. This is mainly due to two reasons. First, the two edge cases, namely the thin film and the full magnonic crystal, are already well understood and, second, other magnetic and structural parameters remain constant. With the help of the measurement results and the simulations, the quasi-analytical theory was validated. Subsequently, the mode profiles were calculated by theory and simulation in order to analyze the mode character in the transition from a thin film to a full magnonic crystal. Two kinds of dynamic eigen-modes were identified, namely hybridized modes and localized modes. For both types, simple formulae were derived describing their characteristic dynamic behavior. Besides, transition rules were found connecting the mode number n of film modes with the mode number m of modes in the full magnonic crystal. In order to correlate the symmetry and magnitude of the demagnetizing field with the spin-wave eigen-modes, the internal fields of a strongly surface-modulated magnonic crystal were reconstructed by electron holography measurements. By reemploying the measurement results for micromagnetic simulations, the dynamics of the whole system could be reproduced. This strategy allowed for a better understanding of the link between the demagnetizing field and the spin-wave mode characteristics. Based on these results, a simplified model for the analytical description of the inplane angular dependence was found. The acquired understanding of such systems led to the elaboration of specific applications, such as the spin-wave channelization. It should be noted that the coupling of uniform to non-uniform spin-wave phenomena, which is an intrinsic property of these structures, holds out the prospect of several applications in the future.
4

Magnetisierungsdynamik in magnetischen Dünnschichtelementen - untersucht mit zeitaufgelöster Kerrmikroskopie

Neudert, Andreas 18 December 2006 (has links) (PDF)
In dieser Doktorarbeit wird die Magnetisierungsdynamik von strukturierten, weichmagnetischen Einzelschichten aus Permalloy (Ni81Fe19) mittels stroboskopischer Kerrmikroskopie untersucht. Die Dicke der in unterschiedliche Formen (Kreise, Quadrate und Rechtecke) strukturierten magnetischen Schicht beträgt 50 nm bzw. 160 nm. Durch die Verwendung eines gepulsten Lasers als Beleuchtungsquelle wird eine Zeitauflösung erreicht, die unter 25 ps liegt. Parallel zu den Laserpulsen wird die Probe mit gepulsten Magnetfeldern angeregt und die Reaktion der Magnetisierung auf diese schnellen Magnetfeldänderungen wird untersucht. Diese Reaktion der Magnetisierung unterscheidet sich deutlich von einer Anregung mit quasistatischen Magnetfeldern. Durch die stroboskopische Beobachtungsweise sind nur reversible Prozesse sichtbar, irreversible Prozesse werden durch die Mittelung über mehrere Millionen Anregungs- und Beobachtungspulse nicht abgebildet. Dies wird bei der Anregung eines Vortex in einer Kreisscheibe deutlich, bei dem die Magnetisierungsrichtung im Vortexkern durch das gepulste Magnetfeld teilweise geschaltet wird. Dadurch ändert sich der Drehsinn der spiralförmigen Relaxationsbewegung des Vortex, was zu einer Überlagerung der beiden Bewegungen während der Beobachtung führt. Desweiteren wird eine Vervielfältigung von Vortex-Antivortex Paaren in Stachelwänden durch hochfrequente Felder gezeigt. Diese Vervielfältigung führt zur Erzeugung eines neuen, metastabilen Zustandes mit geringerem Stachelabstand. Mit steigender Frequenz des Feldes fällt der Stachelabstand bis auf 30 % des Ausgangswertes. Ab einer Grenzfrequenz, die durch die ferromagnetische Resonanz gegeben ist, kann die Magnetisierung dem Feld nicht mehr folgen und die Wandstruktur ist vergleichbar mit der im quasistatischen Grenzfall. Auch in dickeren Elementen wird diese Erzeugung beobachtet, wo sie zu einer irreversiblen Wandtransformation von der asymmetrischen Blochwand zur Stachelwand führt. Bei der Pulsanregung eines Landau-Domänenzustandes in einem Quadrat kommt es zur Bildung von sichelartigen Domänen an den Ecken des Quadrates. Die Entstehung dieser Domänen geschieht relativ schnell innerhalb einer Nanosekunde. Während der Relaxation der Magnetisierung lösen sich diese neu entstandenen Domänen durch Wandverschiebung wieder auf. Die Auflösung der Domänen geschieht deutlich langsamer als die Entstehung, was durch die unterschiedlichen Mechanismen, die bei der Entstehung (Magnetisierungsdrehung) und Auflösung (Wandverschiebung) der Domänen involviert sind, begründet werden kann. Außerdem kommt es zu einer inkohärenten Drehung der Magnetisierung in der Domäne mit antiparalleler Ausrichtung der Magnetisierung bezüglich des Pulsfeldes. Diese Drehung der Magnetisierung, lateral abwechselnd nach links und rechts, wird durch eine leichte Abweichung der Magnetisierung von einer perfekt homogenen Ausrichtung begünstigt.
5

Spin Waves: The Transition from a Thin Film to a Full Magnonic Crystal

Langer, Manuel 31 July 2017 (has links)
The present work addresses in-depth magnetic films with magnonic surface patterning of variable size. Two different kinds of such structures referred to as surface-modulated magnonic crystals were investigated: Ion-irradiated magnonic crystals and structurally etched magnonic crystals. To achieve that, two different experimental approaches were pursued. On the one hand, the magnetic moment at the surface of lithographically patterned permalloy (Ni80Fe20) films was periodically reduced by means of ion irradiation. On the other hand, structural trenches were introduced at the surface of a pre-patterned thin film by sequential ion milling. The goal is the acquisition of a fundamental understanding of the behavior of spin-wave modes in the transition from a continuous magnetic thin film to a full magnonic crystal, i.e. separated periodic magnetic structures. In the framework of this thesis, the spin-wave eigen-modes of such magnonic crystals were mainly investigated spectroscopically by means of ferromagnetic resonance. Thereby, the “Two-magnon scattering perturbation theory” and the “plane-wave method” were employed as the theoretical methodologies to understand the complex dynamics of such systems. The first is a reliable method to calculate the dynamic response of surface-modulated magnonic crystals where the modulation is of a perturbation character, i.e. small compared to the film thickness. The latter is a quasi-analytical approach to calculate the dynamic eigen-modes of magnonic crystals consisting of different components with significantly varying properties. Moreover, numerical methods were employed to get further insight into the spin dynamics of these structures. In such systems, the spin-wave behavior follows the well-known dispersion relation of flat magnetic thin films as long as the surface-modulation is small compared to the film thickness. In this work, it was shown that this circumstance can be exploited for a parameter-free determination of the exchange constant A, which is not experimentally accessible for magnetic thin films in a straightforward manner. However, once the modulation height is of significant magnitude, the dynamics of surface-modulated magnonic crystals become substantially more complex. A straightforward understanding of such kind of system is hampered by the complex interplay of different effects. On the one hand, the internal demagnetizing field reveals an alternating character and depends itself on the modulation height and the field angle. On the other hand, the dynamic eigen-modes are hybridized, i.e., they reveal different characteristics in different regions of the magnonic crystal and, in addition, they couple to each other. Here, the approach is particularly favorable to investigate the spin dynamics of surface-modulated magnonic crystals by systematically altering the modulation height of the same sample. This is mainly due to two reasons. First, the two edge cases, namely the thin film and the full magnonic crystal, are already well understood and, second, other magnetic and structural parameters remain constant. With the help of the measurement results and the simulations, the quasi-analytical theory was validated. Subsequently, the mode profiles were calculated by theory and simulation in order to analyze the mode character in the transition from a thin film to a full magnonic crystal. Two kinds of dynamic eigen-modes were identified, namely hybridized modes and localized modes. For both types, simple formulae were derived describing their characteristic dynamic behavior. Besides, transition rules were found connecting the mode number n of film modes with the mode number m of modes in the full magnonic crystal. In order to correlate the symmetry and magnitude of the demagnetizing field with the spin-wave eigen-modes, the internal fields of a strongly surface-modulated magnonic crystal were reconstructed by electron holography measurements. By reemploying the measurement results for micromagnetic simulations, the dynamics of the whole system could be reproduced. This strategy allowed for a better understanding of the link between the demagnetizing field and the spin-wave mode characteristics. Based on these results, a simplified model for the analytical description of the inplane angular dependence was found. The acquired understanding of such systems led to the elaboration of specific applications, such as the spin-wave channelization. It should be noted that the coupling of uniform to non-uniform spin-wave phenomena, which is an intrinsic property of these structures, holds out the prospect of several applications in the future.
6

High Frequency Behaviour of Magnetic Thin Film Elements for Microelectronics

Chumakov, Dmytro 20 November 2006 (has links)
Magnetismus ist ein Phänomen, das eine wichtige Rolle in einer Vielfalt technischer Anwendungen spielt. Ohne den Einsatz magnetischer Effekte und Materialen wäre der heutzutage erreichte technische Fortschritt unmöglich, da viele grundlegende Techniken wie Stromerzeugung, elektrischer Antrieb, Informationsübertragung und viele andere auf magnetische bzw. elektromagnetische Phänomene zurückzuführen sind. Dabei haben die ferromagnetischen Materialen stets zur Effizienz von elektrischen und elektronischen Anwendungen beigetragen, weswegen an diesen Materialen auch entsprechend viel geforscht worden ist. Moderne Technologien, insb. Massenspeicher basieren oft auf Ferromagneten und erfordern daher die weitere Erforschung und Anpassung ihrer Eigenschaften. Für die Funktionalität von Hochgeschwindigkeitsgeräten spielt das dynamische Verhalten dünner magnetischer Schichten eine kritische Rolle. In dieser Arbeit wird die Magnetisierungsdynamik dünner Schichtelemente mittels zeitaufgelöster Weitfeld- Kerrmikroskopie untersucht. Dies ist ein aktuelles Thema, an dem in den letzten Jahren sehr intensiv gearbeitet wird. Allerdings sind viele für die Anwendungen sehr wichtige Details des magnetischen Schaltens wegen ihre Vielfältigkeit und Komplexität doch nicht vollständig untersucht und verstanden. In dieser Arbeit werden überwiegend experimentelle Ergebnisse vorgestellt, die einen zusätzlichen Beitrag zum aktuellen Wissenstand leisten. In einem ferromagnetischen Körper bilden sich Bereiche mit spontaner Magnetisierung, die man als Domänen bezeichnet. Die spontane Magnetisierung entsteht aufgrund der Spin-Spin Wechselwirkung, und die Domänen bilden sich aufgrund der Energieminimierung des magnetisierten Körpers. Langsame Magnetisierungsprozesse werden im Wesentlichen getragen von Domänenumordnungen und Domänengrenzenverschiebungen. Solche Prozesse bezeichnet man als quasistatisch, da sich der Körper durch deren Langsamkeit immer im Gleichgewicht oder zumindest sehr nahe daran befindet. Mit zunehmender Anregungsgeschwindigkeit gilt diese Annahme nicht mehr, da die Präzessionsbewegung der magnetischen Momente das Schaltverhalten in diesem Fall definiert. Die Untersuchung der Magnetisierungsdynamik setzt die Möglichkeit voraus, nicht-unterbrochene Prozesse beobachten zu können. Dieses Ziel kann mittels stroboskopischer Abbildung erreicht werden. Dabei wird derselbe Prozess kontinuierlich wiederholt (vorausgesetzt, dass die Prozesse sich reproduzierbar wiederholen lassen), und zu definierten Zeitpunkten werden die entsprechenden Kerraufnahmen gemacht. Dafür wird eine CCD Kamera mit einem Photoverstärker benutzt, welcher als optischer Schalter fungiert. Die Zeitauflösung dieses Systems und damit auch das Vermögen, die Hochfrequenzvorgänge abzubilden, beträgt 250 ps. Die Eigenschaften des magnetischen Umschaltens hängen stark von der Elementgeometrie ab. Diese Unterschiede sind auf unterschiedliche Entmagnetisierungsfaktoren, und damit auf Unterschiede in den effektiven Feldern zurückzuführen. Solche Unterschiede werden auf zwei Weisen initiiert: ein quadratisches Element wird entlang unterschiedlicher Richtungen (entlang der Seite und der Diagonalen) angeregt; die Form des Elementes wird zwischen Quadrat und Rechteck mit unterschiedlichen Seitenverhältnissen variiert. Die beobachteten Schaltvorgänge werden miteinander verglichen und die Ergebnisse dargestellt. Dabei werden auch die dynamischen Vorgänge immer mit den quasistatischen verglichen. Aus dem Vergleich folgt, dass ein steigendes Seitenverhältnis zur geringeren Schaltgeschwindigkeit führt, und dass die dabei entstehenden Domänen zunehmend komplexer werden. Dabei gibt es wesentliche Unterschiede zwischen den dynamischen und quasistatischen Domänen, vor allem in der Domänenwandstruktur. Das Schalten an sich unterscheidet sich auch sehr stark. Quasistatisches Schalten erfolgt überwiegend durch Domänenwandbewegung, während das dynamische Schalten durch inkohärente Rotation der Magnetisierung im ganzen Element erfolgt. Das Hochfrequenzverhalten am Prototypen eines Mikroinduktors wird untersucht. Der Induktor besteht aus vielen magnetischen Elementen, die eine induzierte uniaxiale Anisotropie besitzen. Diese ist bei der Hälfte der Elemente entlang des Magnetfeldes, und bei der anderen Hälfte senkrecht zum Magnetfeld der Spule ausgerichtet. Das dynamische Verhalten der beiden Elementtypen unterscheidet sich stark, vor allem die Ummagnetisierungsgeschwindigkeit. Diese Unterschiede können zu einer Phasenverschiebung im elektrischen Signal führen, was die Effizienz des Induktors senkt. Durch die Untersuchung der Magnetisierungsdynamik in Wechselfeldern unterschiedlicher Frequenz ist auch festgestellt worden, dass bis 100 MHz die Magnetisierungsvorgänge überwiegend durch Domänenwandbewegung erfolgen, während ab 200 MHz- Rotationsprozesse stattfinden.
7

Magnetisierungsdynamik in magnetischen Dünnschichtelementen - untersucht mit zeitaufgelöster Kerrmikroskopie

Neudert, Andreas 04 December 2006 (has links)
In dieser Doktorarbeit wird die Magnetisierungsdynamik von strukturierten, weichmagnetischen Einzelschichten aus Permalloy (Ni81Fe19) mittels stroboskopischer Kerrmikroskopie untersucht. Die Dicke der in unterschiedliche Formen (Kreise, Quadrate und Rechtecke) strukturierten magnetischen Schicht beträgt 50 nm bzw. 160 nm. Durch die Verwendung eines gepulsten Lasers als Beleuchtungsquelle wird eine Zeitauflösung erreicht, die unter 25 ps liegt. Parallel zu den Laserpulsen wird die Probe mit gepulsten Magnetfeldern angeregt und die Reaktion der Magnetisierung auf diese schnellen Magnetfeldänderungen wird untersucht. Diese Reaktion der Magnetisierung unterscheidet sich deutlich von einer Anregung mit quasistatischen Magnetfeldern. Durch die stroboskopische Beobachtungsweise sind nur reversible Prozesse sichtbar, irreversible Prozesse werden durch die Mittelung über mehrere Millionen Anregungs- und Beobachtungspulse nicht abgebildet. Dies wird bei der Anregung eines Vortex in einer Kreisscheibe deutlich, bei dem die Magnetisierungsrichtung im Vortexkern durch das gepulste Magnetfeld teilweise geschaltet wird. Dadurch ändert sich der Drehsinn der spiralförmigen Relaxationsbewegung des Vortex, was zu einer Überlagerung der beiden Bewegungen während der Beobachtung führt. Desweiteren wird eine Vervielfältigung von Vortex-Antivortex Paaren in Stachelwänden durch hochfrequente Felder gezeigt. Diese Vervielfältigung führt zur Erzeugung eines neuen, metastabilen Zustandes mit geringerem Stachelabstand. Mit steigender Frequenz des Feldes fällt der Stachelabstand bis auf 30 % des Ausgangswertes. Ab einer Grenzfrequenz, die durch die ferromagnetische Resonanz gegeben ist, kann die Magnetisierung dem Feld nicht mehr folgen und die Wandstruktur ist vergleichbar mit der im quasistatischen Grenzfall. Auch in dickeren Elementen wird diese Erzeugung beobachtet, wo sie zu einer irreversiblen Wandtransformation von der asymmetrischen Blochwand zur Stachelwand führt. Bei der Pulsanregung eines Landau-Domänenzustandes in einem Quadrat kommt es zur Bildung von sichelartigen Domänen an den Ecken des Quadrates. Die Entstehung dieser Domänen geschieht relativ schnell innerhalb einer Nanosekunde. Während der Relaxation der Magnetisierung lösen sich diese neu entstandenen Domänen durch Wandverschiebung wieder auf. Die Auflösung der Domänen geschieht deutlich langsamer als die Entstehung, was durch die unterschiedlichen Mechanismen, die bei der Entstehung (Magnetisierungsdrehung) und Auflösung (Wandverschiebung) der Domänen involviert sind, begründet werden kann. Außerdem kommt es zu einer inkohärenten Drehung der Magnetisierung in der Domäne mit antiparalleler Ausrichtung der Magnetisierung bezüglich des Pulsfeldes. Diese Drehung der Magnetisierung, lateral abwechselnd nach links und rechts, wird durch eine leichte Abweichung der Magnetisierung von einer perfekt homogenen Ausrichtung begünstigt.
8

Magnetization dynamics in all-optical pump-probe experiments: spin-wave modes and spin-current damping / Magnetisierungsdynamik in Pump-Probe Experimenten: Spinwellen Moden und Spinstrom Dämpfung

Djordjević Kaufmann, Marija 06 November 2006 (has links)
No description available.
9

Morphology-Induced Magnetic Phenomena Studied by Broadband Ferromagnetic Resonance

Körner, Michael 05 November 2013 (has links) (PDF)
In the present work, the influence of the morphology of thin ferromagnetic films on their static as well as dynamic magnetic properties was investigated by means of broadband ferromagnetic resonance (FMR). Using an ion beam erosion process the surface of the substrates was periodically modulated (ripples), where the modulation wavelength is determined by the ion energy. In this way a well-controllable roughness profile evolves ranging from a few ten up to several hundreds of nanometers in wavelength. The substrate’s surface profile in turn is repeated by films grown on top offering an easy and fast approach to investigate morphology influences on the magnetic properties. This work aims on modifications of the magnetic anisotropy as well as the FMR linewidth of the magnetic relaxation process. Prior to magnetic investigations the existing FMR setup was extended to measure FMR spectra at a fixed microwave frequency while sweeping the external magnetic field. Furthermore, a software toolbox was developed to perform the data processing and evaluation. Starting with the morphology influence on the magnetic anisotropy 10 nm thin Fe, Co, and Ni81Fe19 (Permalloy ≡ Py) films were deposited on rippled Si substrates. Due to Si displacements during ion erosion and natural oxidation the rippled Si substrates exhibit an amorphous surface causing a polycrystalline material growth. This leads to a suppression of magneto-crystalline anisotropy leaving only morphology-induced anisotropy contributions. Here, a uniaxial magnetic anisotropy (UMA) was observed that aligns its easy axis with the ripple ridges, whereas its strength decays with increasing ripple wavelength for all materials. From thickness-dependent measurements two characteristic regions were determined with competing uniaxial volume and surface anisotropy contributions. Underlined by micromagnetic simulations a dominant volume contribution was found in the thin region accompanied by magnetic moments nearly following the surface corrugation. In the thick region the UMA is controlled by dipolar stray fields at the surface. In contrast to Si, ion eroded MgO keeps its crystal structure offering epitaxial growth of 10 nm thin single-crystalline Fe films. Consequently, a superposition of morphology-induced UMA and magneto-crystalline cubic anisotropy was observed. The direction of the ripple ridges is predetermined by the incident ion beam, which allows to freely orient the UMA’s direction with respect to the cubic anisotropy, offering a possibility for anisotropy engineering. In comparison to the planar reference case rippled magnetic films exhibit lower intrinsic and extrinsic relaxation contributions. For the final part, 30 nm Py was grown on rippled Si covering modulation wavelengths λ ranging from 27 to 432 nm. Using magnetic force microscopy and holography measurements the dipolar stray fields above and inside the magnetic layer were characterized. For λ ≥ 222 nm, the stray fields act as scattering centers for spin waves triggering two-magnon scattering (TMS). This causes an apparent line broadening generating distinct peaks in the frequency-dependent linewidth whose position can be tuned by altering λ. These effects are understood in the framework of a perturbation theory of spin waves in periodically perturbed films recently presented in the literature. Furthermore, the in-plane angular dependence of the linewidth revealed a two-fold symmetry, which is not present for vanishing TMS at small λ. / In Rahmen dieser Arbeit wurde der Einfluss der Morphologie eines dünnen ferromagnetischen Films auf dessen statische und dynamische Eigenschaften mittels breitbandiger ferromag- netischer Resonanz (FMR) untersucht. Durch Ionenstrahl-Erosion wurde die Oberfläche des verwendeten Substrats periodisch moduliert (Ripple), wobei die Wellenlänge der Modulation durch die Ionenenergie bestimmt ist. Dies ermöglicht die kontrollierte Herstellung rauer Oberflächen mit Wellenlängen zwischen wenigen zehn bis zu einigen hundert Nanometern. Werden auf diesen Oberflächen Filme abgeschieden, übernehmen diese die Modulation. Somit ergibt sich eine einfache und schnelle Untersuchungsmöglichkeit der magnetischen Filmeigenschaften in Hinblick auf die Morphologie. Das Ziel dieser Arbeit ist die Untersuchung von Morphologieeinflüssen auf die magnetische Anisotropie sowie FMR-Linienbreite. Im Vorfeld der magnetischer Untersuchungen wurde der bestehende FMR-Aufbau um einen Messmodus erweitert, sodass Messungen bei fester Mikrowellenfrequenz und gleichzeitigem Durchfahren eines externen magnetischen Feldes möglich wurden. Weiterhin wurde ein Softwarepaket für die Datenauswertung entwickelt. Beginnend mit dem Morphologieeinfluss auf die magnetische Anisotropie wurden 10 nm dünne Fe, Co und Ni81Fe19 (Permalloy ≡ Py) Filme auf periodisch moduliertem Si abgeschieden. Durch Versetzungen während der Ionenstrahl-Erosion und Bildung einer natürlichen Oxidschicht bildet sich bei den verwendeten Substraten eine amorphe Oberfläche, was zu polykristallinem Schichtwachstum führt. Dadurch wird die magneto-kristalline Anisotropie unterdrückt und morphologie-induzierte Beiträge bestimmen die Anisotropie. Beobachtet wurde eine induzierte uniaxiale magnetische Anisotropie (UMA), deren leichte Richtung sich entlang der Ripple-Wellenzüge ausrichtet. Mittels schichtdickenabhängigen Messungen wurden zwei charakteristische Regionen mit konkurrierender uniaxialer Volumen- und Oberflächenanisotropie ermittelt. Dabei ist die Volumenkomponente im Bereich dünner Schichten vorherrschend und die magnetischen Momente richten sich entlang der Oberflächenmodulation aus. Für dickere Schichten ist die UMA dahingegen durch dipolare Streufelder bestimmt. Die experimentellen Funde werden in beiden Bereichen durch mikromagnetische Simulationen untermauert. Im Gegensatz zu erodiertem Si behält MgO seine Kristallstruktur, was epitaktisch gewachsene, einkristalline Fe-Schichten von 10 nm Dicke ermöglicht. Folglich wurde eine Überlagerung aus induzierter und kristalliner Anisotropie beobachtet. Dadurch, dass die Richtung der Ripple durch die Richtung des Ionenstrahls während der Erosion vorgegeben wird, lässt sich die UMA frei gegen die kristalline Anisotropie drehen, was wiederum Möglichkeiten zur gezielten Beeinflussung der Anisotropie bietet. Im Hinblick auf die dynamischen magnetischen Eigenschaften führen Ripple zu einer Verringerung der intrinsischen und extrinsischen Relaxationsbeiträge. Für den letzten Teil der Arbeit wurde 30 nm dünnes Py auf Si-Ripple gewachsen, wobei ein Wellenlängenbereich von λ = 27 nm bis 432 nm abgedeckt wurde. Mit Hilfe von magnetischer Kraftmikroskopie und Holographie wurden die dipolaren Streufelder über und in den Filmen untersucht. Ab λ ≥ 222 nm ermöglichen diese dipolaren Felder eine Streuung von Spinwellen, sodass Zwei-Magnonen-Streuung (TMS) auftritt. Dies führt zu einer scheinbaren Linienverbreiterung und äußert sich durch einzelne Peaks in der frequenzabhängigen Linienbreite. Letztere lassen sich in ihrer Frequenzposition durch die Wellenlänge des Substrates beeinflussen und können mittels einer kürzlich in der Literatur veröffentlichten Störungstheorie für Spinwellen in periodisch gestörten Filmen erklärt werden. Weiterhin wurde in der winkelabhängigen Linienbreite eine zweifache Symmetrie beobachtet, welche durch die TMS hervorgerufen wird und folglich nicht bei kleinen Wellenlängen zu beobachten ist.
10

Magnetisierungsdynamik weichmagnetischer Dünnschichten mit modifizierter magnetischer Mikrostruktur / Magnetization dynamics of soft magnetic thin films with modified magnetic microstructure

Hengst, Claudia 12 March 2014 (has links) (PDF)
Abschlussdomänenstrukturen in strukturierten weichmagnetischen dünnen Schichten wurden systematisch hinsichtlich ihrer Domänenweite, Domänenmagnetisierungsrichtung, Domänenwandtypen und Wandlängen modifiziert. Somit konnte ein umfassendes Verständnis über die Beeinflussungsmöglichkeiten des dynamischen Magnetisierungsverhaltens von Abschlussdomänenkonfigurationen im GHz-Bereich erarbeitet werden. Ein bekanntes Modell zur Berechnung der akustischen Domänenresonanzfrequenz von 180° -Domänenkonfigurationen wurde unter Berücksichtigung von Abschlussdomänen und endlichen effektiven Domänenwandweiten erfolgreich erweitert. Damit ist eine präzise Vorhersage des dynamischen Verhaltens von 180° - Abschlussdomänenstrukturen möglich. Außerdem wurde aufgezeigt, dass über die Messung der ferromagnetischen Resonanz Domänenwandumwandlungen im Magnetfeld detektiert werden können. Für Strukturen mit angepasster Anisotropie wurde unabhängig von der Anisotropiestärke eine konstante akustische Resonanzfrequenz beobachtet. Dieser unerwartete Zusammenhang wird auf die kompensatorischeWirkung von Abschlussdomänenstrukturen zurückgeführt. Abschließend wird gezeigt, dass für sogenannte Bucklingdomänenstrukturen eine signifikant größere Beeinflussung der ferromagnetischen Resonanzfrequenz durch vergleichsweise kleine statische Magnetfelder erzielt werden kann, als dies bei homogen magnetisierten Strukturen und Schichten der Fall ist. Die vorgestellten Ergebnisse dieser Arbeit zeigen, dass über eine Einstellung der ferromagnetischen Domänenstruktur das dynamische Verhalten weichmagnetischer strukturierter Schichten über einen vergleichsweise breiten Frequenzbereich hinweg gezielt modifiziert werden kann.

Page generated in 0.4898 seconds