• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 63
  • 15
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 302
  • 67
  • 66
  • 53
  • 51
  • 29
  • 28
  • 27
  • 25
  • 25
  • 23
  • 22
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Nanostructural Studies of Protein Mms6 Using Atomic Force Microscopy

Perez-Guzman, Lumarie 30 August 2012 (has links)
No description available.
92

Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

Zhang, Qian 01 May 2007 (has links)
Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functional groups. The complexes were formed through interactions of the carboxylates with the surfaces of the magnetite nanoparticles. Initial efforts utilized an aqueous coprecipitation method for the synthesis of magnetite nanoparticles, which yielded polydisperse magnetite nanoparticles. The nanoparticle complexes were characterized with a range of solution- and solid-state techniques including TGA, XPS, TEM, VSM, DLS and zeta potential measurements. DLVO calculation methods, which sum the contributions from van der Waals, steric, electrostatic and magnetic forces were utilized to examine the interparticle potentials in the presence and absence of external magnetic fields. Compositions were identified wherein a shallow, attractive interparticle potential minimum appears once the magnetic term is applied. This suggested the possibility of tuning the structures of superparamagnetic nanoparticle shells to allow discrete dispersions without a field, yet permit weak flocculation upon exposure to a field. This property has important implications for biomedical applications where movement of particles with an external magnetic field is desirable. In a second study, well-defined, narrow size dispersity magnetite nanoparticles were synthesized via the thermolysis of an iron (III) acetylacetonate (Fe(acac)3) precursor in the presence of benzyl alcohol. The magnetite nanoparticles were coated with triblock and pentablock copolymers possessing poly(ethylene oxide) and poly(propylene oxide-b-ethylene oxide) tailblocks and the carboxylate-functional anchor block. DLVO calculations were applied to the new magnetite particles and diagrams of potential energy versus interparticle distance indicated the predominant effect of steric and magnetic interactions on the particle stability. Exposure of the pentablock copolymer-magnetite complexes in phosphate buffered saline to a 1500 Oe magnetic field with concomitant DLS measurements indicated flocculation of the magnetic nanoparticles. DLS measurements showed increased hydrodynamic radii and scattering intensities with time. / Ph. D.
93

Magnetite Oxidation in Aqueous Systems

Templeton, John Andrew 15 July 2008 (has links)
Magnetite, an iron oxide, is a possible candidate for in situ remediation of contaminated groundwater systems due to its oxidation/reduction potential for reduction of contaminants such as carbon tetrachloride. Little characterization and analysis has been done to describe the kinetics of magnetite transformation during oxidation. This work focuses on monitoring the concentrations of magnetite and one of its oxidation transformation products, maghemite, by the use of UV-Vis-NIR spectroscopy. As oxidation proceeded at a constant specific temperature, the concentration of magnetite decreases, which was indicated by a decrease in absorption in the NIR-region of the spectrum. As magnetite concentrations decreased, the concentration of maghemite increased, which was indicated by an increase in absorption in the UV-region. The temperature at which the suspensions of magnetite and maghemite were measured was of great importance for complete understanding of the magnetite transformation as seen by UV-Vis-NIR spectroscopy analysis. Higher measurement temperatures produced higher absorptivities of FeII-FeIII electron hopping transitions, while decreasing the absorptivity of FeIII-FeIII in the NIR and UV-regions respectively. Lower temperatures produced the opposite effects on the iron oxides' transitions. Higher temperature increased the rate of oxidation. / Master of Science
94

Characterization of Magnetite Nanoparticle Reactivity in the Presence of Carbon Tetrachloride

Heathcock, April Marie 21 September 2006 (has links)
Throughout the United States, there are a large number of groundwater systems contaminated by chlorinated organic compounds. Of these compounds, carbon tetrachloride (CT) is one of the most frequently encountered due to its past, widespread industrial use. In anaerobic groundwater environments, CT has been shown to be susceptible to degradation by both biotic and abiotic processes. One abiotic process that has been researched extensively is the reduction of CT by iron metal and associated iron oxides and hydroxides. Magnetite, an iron oxide, is a ubiquitous component of many subsurface environments and has been investigated as a potential groundwater remediation technology. One beneficial characteristic of magnetite is the capability to be synthetically produced in various sizes and shapes - including particles within the nanoscale range. Nanoscale particles have been shown to be more reactive towards contaminants than larger sized particles due to their large surface areas and high surface reactivity. This project was designed to characterize the behavior of synthetic magnetite in the presence of carbon tetrachloride under anaerobic conditions. / Master of Science
95

The formation of cementite from hematite and titanomagnetite iron ore and its stability

Longbottom, Raymond James, Materials Science & Engineering, Faculty of Science, UNSW January 2005 (has links)
This project examined the reduction and formation of cementite from hematite and titanomagnetite ores and cementite stability. The aim of the project was to develop further understanding of cementite stability under conditions relevant to direct ironmaking and the mechanism of cementite decomposition. The reduction of hematite and ironsand by hydrogen-methane-argon gas mixtures was investigated from 600??C to 1100??C. Iron oxides were reduced by hydrogen to metallic iron, which was carburised by methane to form cementite. The hematite ore was reduced more quickly than the ironsand. Preoxidation of the ironsand accelerated its reduction. Hematite was converted to cementite faster than preoxidised ironsand. The decomposition of cementite formed from hematite was investigated from 500??C to 900??C. This cementite was most stable at temperatures 750-770??C. The decomposition rate increased with decreasing temperature between 750??C and 600??C and with increasing temperature above 770??C. The stability of cementite formed from pre-oxidised titanomagnetite was studied from 300??C to 1100??C. This cementite was most stable in the temperature range 700-900??C. The rate of decomposition of cementite increased with decreasing temperature between 700??C and 400??C and with increasing temperature above 900??C. Cementite formed from ironsand was more stable than cementite formed from hematite
96

Zero-Dimensional Magnetite

Arredondo, Melissa Gayle 01 December 2006 (has links)
Low-dimensional magnetic systems are of interest due to several new effects and modifications that occur at sizes below the average domain grain boundary within the bulk material. Molecule-like magnetite (Fe3O4) nanoparticles, with sizes ranging from one to two nm were synthesized and characterized in order to investigate new properties arising from quantum size effects. These small systems will provide opportunities to investigate magnetism of zero-dimension systems. A zero-dimensional object is usually called a quantum dot or artificial atom because its electronic states are few and sharply separated in energy, resembling those within an atom. Since the surface to volume ratio is the highest for zero-dimensional systems, most of the changes to magnetic behavior will be observed in ultra-fine magnetic particles. Chemically functional magnetic nanoparticles, comprised of a Fe3O4 magnetite core encased in a thin aliphatic carboxylate, have been prepared by sequential high temperature decomposition of organometallic compounds in a coordinating solvent. In this work, aliphatic carboxylic acid chain length, reaction temperature and duration were varied to produce small core diameters. In order to correlate size effects with changes in particle formation, it is important to have a through understanding of the structural components. This includes studies of the core size, surface effects, decomposition, electronic properties and magnetic behavior. Quantum size effects were observed in the (Fe3O4)X(carboxylate)Y monolayer protected clusters (MPCs) when the average core diameter was ≤ 2.0 nm, evidenced by a blue shifted absorbance band maxima, suggesting the onset of quantum confinement. These (Fe3O4)X(carboxylate)Y MPCs also posses a complex interplay between surface and finite size effects, which govern the magnetic properties of these zero-dimensional systems. These MPCs are all superparamagnetic above their blocking temperatures with total magnetic anisotropy values greater than the bulk value due to an increase in surface and magnetocrystalline anisotropy. A non-linear decrease in saturation magnetization (MS) [Bohr Magneton] per cluster) as a function of the reciprocal of core radius have been attributed to surface effects such as a magnetically inactive layer or an increase in spin disorder as core diameter decreases. The reduced core dimensions of these MPCs make them ideal candidates for further investigation of quantum magnetic systems.
97

The formation of cementite from hematite and titanomagnetite iron ore and its stability

Longbottom, Raymond James, Materials Science & Engineering, Faculty of Science, UNSW January 2005 (has links)
This project examined the reduction and formation of cementite from hematite and titanomagnetite ores and cementite stability. The aim of the project was to develop further understanding of cementite stability under conditions relevant to direct ironmaking and the mechanism of cementite decomposition. The reduction of hematite and ironsand by hydrogen-methane-argon gas mixtures was investigated from 600??C to 1100??C. Iron oxides were reduced by hydrogen to metallic iron, which was carburised by methane to form cementite. The hematite ore was reduced more quickly than the ironsand. Preoxidation of the ironsand accelerated its reduction. Hematite was converted to cementite faster than preoxidised ironsand. The decomposition of cementite formed from hematite was investigated from 500??C to 900??C. This cementite was most stable at temperatures 750-770??C. The decomposition rate increased with decreasing temperature between 750??C and 600??C and with increasing temperature above 770??C. The stability of cementite formed from pre-oxidised titanomagnetite was studied from 300??C to 1100??C. This cementite was most stable in the temperature range 700-900??C. The rate of decomposition of cementite increased with decreasing temperature between 700??C and 400??C and with increasing temperature above 900??C. Cementite formed from ironsand was more stable than cementite formed from hematite
98

In vivo measurement and imaging of ferrimagnetic particle concentrations in biological tissues

Pardoe, Heath January 2005 (has links)
[Truncated abstract] Clinical magnetic resonance imaging (MRI) scanners were used to investigate the measurement and imaging of ferrimagnetic particle concentrations in biological tissues in vivo. The presence of ferrimagnetic particles tends to increase the proton transverse relaxation rate (R2) of water protons in tissue. A quantitative image of R2 can be generated using a series of single spin echo magnetic resonance images acquired using clinical MRI scanners and analysing the images using techniques based on that reported by Clark and St. Pierre (2000). If ferrimagnetic particles have a high enough concentration, there is a monotonic relationship between particle concentration and R2; therefore an image of R2 gives a map of the ferrimagnetic particle concentration in the tissue. These techniques were used to investigate the feasibility of in vivo measurement of the concentration and distribution of both synthetic and biogenic ferrimagnetic particles in tissue. Rabbit liver was loaded with ferrimagnetic particles of ?-Fe2O3 (designed for magnetic hyperthermia treatment of liver tumours) by injecting various doses of a suspension of the particles into the hepatic artery in vivo. R2 images of the livers in vivo, excised, and dissected were generated from a series of single spin-echo images. Mean R2 values for samples of ferrimagnetic-particle-loaded liver dissected into approximate 1 cm cubes were found to linearly correlate with tissue iron concentration over the range from approximately 0.1 to at least 2.7 mg Fe/g dry tissue when measured at room temperature. Changing the temperature of ferrimagnetic-particle-loaded samples of liver from 1?C to 37?C had no observable effect on tissue R2 values. However, a small but significant decrease in R2 was found for control samples containing no ferrimagnetic material on raising the temperature from 1?C to 37?C. Both chemically measured iron ii concentrations and mean R2 values for rabbit livers with implanted tumours tended to be higher than those measured for tumour-free liver. This study indicates that tissue R2 measurement and imaging by nuclear magnetic resonance may have a useful role in magnetic hyperthermia therapy protocols for the treatment of liver cancer. In order to investigate the use of clinical MRI scanners to measure biogenic ferrimagnetic particle concentrations in human brain tissue, agar gel based phantoms containing ferrimagnetic particles were made in order to determine the lower concentration detection limit for such particles in a homogenous medium. Magnetite/maghemite nanoparticles were synthesized in the presence of either dextran or polyvinyl alcohol, yielding cluster- and necklace-like aggregates, respectively. Magnetization, Mossbauer spectroscopy, and microscopy measurements indicated that the arrangement of the particles within the aggregates affects the magnetic properties of the particles resulting in smaller particles in the clusters having higher superparamagnetic blocking temperatures than larger particles in the necklaces.
99

Réactions redox du plutonium et de l'antimoine avec des minéraux de fers en milieux anoxique / Abiotic redox reactions of antimony and plutonium under anoxic conditions

Kirsch, Regina 17 January 2012 (has links)
Les réactions d'oxydoréduction de l'antimoine (V) et (III) avec la mackinawite (FeS) et du plutonium (III) et (V) avec plusieurs minéraux à fer(II) et des oxydes de fer(III) ont été étudiées dans des conditions d'anoxie. La spectroscopie d'absorption des rayons X fut utilisée pour l'analyse de l'état d'oxydation et de la structure locale du Sb et Pu associés à la phase solide. Après réaction avec la mackinawite, la chukanovite et la magnétite, PuO2, Pu(III) ou des mixtures des deux états d'oxydation ont été observé. A la surface de la magnétite un complexe tridenté du Pu(III) a pu être mis en évidence à l'aide des spectres EXAFS couplé à une simulation de Monte-Carlo utilisant le code de calcul Feff. La quantité relative de Pu(III) est fonction de l'espèce minérale, du ratio solide/liquide, des valeurs pe et pH du système et, potentiellement, de la taille de particule et de la cristallinité de la phase solide de PuO2 en présence de laquelle le Pu(III) existe. Avec la mackinawite à pH 6,2 et à une occupation de surface de 67 nmol/m2 et avec la magnétite jusqu'à pH 8.4 et 56 nmol/m2 de Pu, uniquement du Pu(III) fut trouvé associé à la phase solide. Avec la maghémite contenant du fer(II) résiduel à pH6 Pu(III) et Pu(IV) était, probablement, présents dans des complexes de surfaces similaire à celui formé par le Pu(III) sur la magnétite. Dans les conditions expérimentales (couverture de surface ≤ 77 nmol/m2), aucune formation de PuO2 ne fut observé. Après réaction avec l'hématite et la goethite Pu(IV) était l'état d'oxydation prédominant associé à la phase solide. La sorption et la réduction du Sb(V) avec la mackinawite était fortement fonction du pH. A pH acide la sorption était rapide et Sb(V) fut complètement réduit en Sb(III), formant un complexe Sb(III)-S3 probablement associé à la surface de la mackinawite. La réduction du Sb(V) était couplée à l'oxydation de la mackinawite et la greigite (Fe3S4) fut détectée par XRD. A pH basique, la sorption du Sb(V) est lente et la réduction vers le Sb(III) n'était complète qu'à des ratios de Sb/FeS très bas. Pour des valeurs plus élevé de Sb/FeS la sorption de Sb se faisait en partie par la réduction envers le complexe de Sb(III)-S3 et en partie par une co-précipitation avec le Fe(III). Il a pu être démontré que les minéraux à fer(II) peuvent effectivement contribuer à la réduction et à l'immobilisation de l'antimoine et du plutonium qui sont des contaminants environnementaux d'importance croissante. / Redox reactions of Sb(V) and Sb(III) with mackinawite (FeS) and of aqueous Pu(III) and Pu(V) with various Fe(II)-bearing minerals and Fe(III)-oxides have been investigated under anoxic conditions. X-ray absorption spectroscopy was used to analyze oxidation state and local coordination environment of Sb and Pu associated with the solid phase. After reaction with mackinawite, chukanovite and magnetite, PuO2, Pu(III) or mixtures of the two oxidation states were observed. On magnetite, a tridentate Pu(III) surface complex could be identified from EXAFS combined with Feff-Monte-Carlo simulation. The relative amount of Pu(III) depends on the type of mineral, the solid/solution ratio, the system pe and pH, and, potentially, the particle size and crystallinity of the formed PuO2 solid phase. With mackinawite at pH 6.2 and a surface loading of 67 nmol/m2 and with magnetite up to pH 8.4 and a surface loading of 56 nmol/m2, only Pu(III) was identified associated with the solid phase. With maghemite containing residual Fe(II) at pH6, Pu(III) and Pu(IV) were present in, probably, inner-sphere surface complexes similar to the one formed by Pu(III) on magnetite. Under the given conditions (surface loadings ≤ 77 nmol/m2) formation of PuO2 was not observed. After reaction with hematite and goethite, Pu(IV) was the predominant oxidation state associated with the solid phase. Sorption and reduction of Sb(V) on mackinawite were strongly pH dependent. At acidic pH, sorption was fast and Sb(V) was completely reduced to an Sb(III)-sulfide complex associated with the solid phase. Reduction of Sb(V) was coupled to oxidation of mackinawite and formation of a greigite (Fe3S4) phase could be observed by XRD. At basic pH, Sb(V) was slowly removed from solution and reduction to Sb(III) was complete only at very small Sb/FeS ratios. At higher Sb/FeS, Sb(V) removal occurred partly through reduction to solid phase associated Sb(III)-S3 and partly through co-precipitation with Fe(III). In conclusion, it could be shown that Fe(II) bearing minerals can effectively contribute to the reduction and immobilization of antimony and plutonium, two contaminants of growing environmental importance.
100

Superparamagnetic iron-oxide based nanoparticles for the separation and recovery of precious metals from solution

Lakay, Eugene Marlin 03 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2009. / Please refer to full text to view abstract

Page generated in 0.0522 seconds