• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 15
  • 15
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnon-Polaritonen in antiferromagnetischen Kristallen

Häussler, Klaus Maximilian, January 1983 (has links)
Thesis--Munich. / In Periodical Room.
2

Far infrared magneto-spectroscopy of bulk and surface magnetic excitations in FeF←2

Jensen, Morten R. F. January 1996 (has links)
No description available.
3

Properties and dynamics of spin waves in one and two dimensional magnonic crystals

Sietsema, Glade Robert 01 August 2016 (has links)
Spintronics is a newly emerging field in physics, aimed at using the spin of electrons to carry information. One of the primary ways in which this could be done is through the use of spin waves. In order to do this, it will be necessary to have a complete understanding of spin waves and how they behave in various materials and structures. In this dissertation, we aim to create a thorough model of spin waves in both one-dimensional and two-dimensional magnonic crystals in an effort to understand and control their dispersion properties and propagation patterns. Using the Landau-Lifshitz-Gilbert equation, we have derived a model for spin waves in magnonic crystals that allowed us to calculate their dispersion and propagation properties. In the first part of this work we considered two-dimensional magnonic crystals consisting of magnetic cylinders arrange in a lattice and embedded in a second magnetic material. The dispersion relations were found to be heavily dependent on the magnetic properties of the two materials, with band gaps appearing more readily when the magnetization was larger in the cylinders than in the host. It was also found that the dipolar field reduced the symmetry of the results, with reflection symmetry not appearing in the dispersion relations even when it was present in the physical lattice. For the propagation of spin waves in two-dimensional magnonic crystals, we found that their directionality was highly dependent on changes in frequency. Propagation patterns varied from roughly isotropic for spin waves in the middle of a band level, to highly directional propagation along the x and y axes for a frequency near the edge of a band. The absence of propagation was also found for frequencies in a band gap. For spin waves in one-dimensional magnonic crystals, we investigated the effects of applying an electric field to the system. When a uniform electric field was applied to a magnonic crystal consisting of a periodic variation in magnetic materials, the band levels were found to shift downward in frequency, with the magnitude of the shift being dependent on the strength of the electric field. While this method could move existing band gaps, it was not capable of creating a band gap in the dispersion relations. Creation of band gaps was found to occur when a periodically varying electric field was applied to a uniform magnetic material. This effect could be used to create a magnonic device where the dispersion properties can be dynamically controlled with an electric field.
4

Homo Erectus, Neandertaler und Cromagnon : kulturgeschichtliche Untersuchungen zu Theorien der Entwicklung des modernen Menschen.

Heiss, Sebastian J., January 1994 (has links)
Diss.--Kulturgeschichte und Kulturkunde--Universität Hamburg, 1994. / Bibliogr. p. 311-327.
5

Magnon heat transport and magnon-hole scattering in one and two dimensions spin systems

Haes, Hanan Gouda Abd Elwahab Ahmed el. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
6

Untersuchung von magnetischen Anregungen in CeCu2 mit inelastischer Neutronenstreuung

Schedler, Roland 12 October 2007 (has links) (PDF)
Inhalt der vorliegenden Dissertation ist die Untersuchung der elektronischen und magnetischen Eigenschaften der Schwerfermionensubstanz CeCu2. Dafür wurden makroskopische Messungen der Magnetisierung, der Suszeptibilität sowie der spezifischen Wärme aus der Literatur miteinander verglichen und eigenen Neutronenstreuexperimenten gegenübergestellt. Ein Teil der Arbeit widmet sich der Entwicklung des neuen Dreiachsenspektrometers PANDA am FRM2 München. Für dieses wurden umfangreiche Simulationen durchgeführt, um zukünftige Leistungsdaten zu spezifizieren. Mit dem Ray - Trace - Simulationspaket McStas wurde das Neutronenstreugerät modelliert und das Zusammenspiel der neutronenoptischen Bauelemente optimiert. Der zweite Teil der Arbeit beschäftigt sich mit Messungen und Rechnungen zum magnetischen Phasendiagramm von CeCu2. Dazu wurden eigene Messungen der Magnetisierung (VSM) und elastische Neutronenstreuexperimente (D23, ILL Grenoble) einer McPhase - Rechnung gegenübergestellt. Der nächste Abschnitt der Arbeit befasst sich mit elastischen und inelastischen Neutronenstreuexperimenten (IN12 & IN20, ILL Grenoble) an CeCu2 Einkristallen. Diese Messungen untersuchen die statischen (Struktur, Phasendiagramm) sowie dynamischen Eigenschaften (Anregungen) in dieser Substanz. Insbesondere beschäftigen sich diese Messungen mit den Dispersionsrelationen der Magnonen in hohen magnetischen Feldern bis zu mu0H = 12 Tesla. Für diese Experimente wurde eine neue Probenbox für den Einsatz in Hochfeldmagneten entwickelt, welche die Probe fixiert und in einer Schutzgasatmosphäre einschließt. In den Messungen wurde eine unerwartete, dispersionslose Anregung gefunden, welche mit dem derzeitigen Spinwellenmodell unverträglich ist. Bei Erhöhung des Magnetfeldes steigt die Anregungsenergie doppelt so schnell, wie von gewöhnlichen Magnonen erwartet wird. Zur Erklärung wird ein neutroneninduzierter pi/2 - Spinflop - Prozess vorgeschlagen. In einer anderen Messung wurde mit polarisierten Neutronen nach dem bisher indirekt nachgewiesenen, ersten angeregten Kristallfeldniveau bei 9 Millielektronenvolt gesucht. Bei wachsenden Temperaturen konnte kaum magnetische Streuintensität unterhalb 10 Millielektronenvolt gefunden werden. Jedoch wurde eine stark verbreiterte Intensität von 8 bis 15 Millielektronenvolt gemessen. Diese Energie korreliert mit dem Übergang zwischen den angeregten Kristallfeldniveaus. Als Ursache für die Verbreiterung wird eine Kristallfeld - Phonon - Wechselwirkung angegeben. Aus dem Vergleich der in verschiedenen Richtungen gemessenen magnetischen Streuintensitäten des 23 Millielectronvolt Kristallfeldüberganges können dessen Übergangsmatrixelemente abgeschätzt werden. Diese wurden den errechneten Werten der veröffentlichten Kristallfeldparametersätze gegenübergestellt. Es zeigte sich, dass die alten Parametersätze die neuen Messdaten nicht beschreiben können. Deshalb wurde ein neuer Satz aufgestellt, welcher erstmals sowohl die makroskopischen Messungen als auch die Neutronenstreuexperimente erklärt. / In this thesis, the electronic and magnetic properties of the heavy-fermion system CeCu2 are investigated. For that purpose, measurements of susceptibility, magnetisation and specific heat from literature are compared with each other and are compared with neutron-scattering experiments performed for the present work. One part of the thesis is addressed to the design of the new triple-axis spectrometer PANDA, which is situated at the research reactor FRM2 in Munich. Extensive simulations were performed with the ray - tracing simulation package McStas in order to model this neutron scattering instrument and to optimise its neutron optic elements. The second part of this work deals with measurements and calculations of the magnetic phase diagram of CeCu2. The experiments include the macroscopic magnetisation (VSM) and elastic neutron-scattering measurements (D23, ILL Grenoble). The McPhase calculations are in a good agreement with the experiments. The next part presents elastic and inelastic neutron-scattering experiments (IN12 & IN20, ILL Grenoble) at CeCu2 single crystals. These measurements investigate the static (phase diagram) as well as dynamic properties (excitations) of this compound. Especially, the experiments are concentrated on the investigation of the dispersion relation of magnons in magnetic fields up to mu0H = 12 tesla. For these measurements, a new sample holder suitable for use in high magnetic fields was designed, which fixes the sample in a hermetically sealed containment. In the experiments an unexpected dispersionless excitation was observed, which does not fit the standard magnon model. With increasing magnetic field the energy of this excitation increases with a slope of twice the value expected for regular magnons. A neutron - induced pi/2 spin - flop process is proposed to explain this excitation. In another measurement with polarised neutrons the first excited crystal - field level at 9 millielectronvolt, which has not been directly detected up to now, was investigated. With increasing temperature, only small magnetic scattering intensity occurs below 10 millielectronvolt. >From 8 to 15 millielectronvolt a broad signal was detected, which corresponds to the energy of the transition between the two excited levels. Due to a strong crystal field - phonon interaction, the width is unusually broadened. The transition matrix elements can be estimated from the comparison of the components of the magnetic scattering intensities of the 23 millielectronvolt crystal - field transition. These values were compared with the calculated values from published crystal-field parameter sets. The old sets cannot explain the new measurements. A new set was derived which accounts for the macroscopic measurements and for the neutron - scattering data, too.
7

Untersuchung von magnetischen Anregungen in CeCu2 mit inelastischer Neutronenstreuung

Schedler, Roland 26 April 2007 (has links)
Inhalt der vorliegenden Dissertation ist die Untersuchung der elektronischen und magnetischen Eigenschaften der Schwerfermionensubstanz CeCu2. Dafür wurden makroskopische Messungen der Magnetisierung, der Suszeptibilität sowie der spezifischen Wärme aus der Literatur miteinander verglichen und eigenen Neutronenstreuexperimenten gegenübergestellt. Ein Teil der Arbeit widmet sich der Entwicklung des neuen Dreiachsenspektrometers PANDA am FRM2 München. Für dieses wurden umfangreiche Simulationen durchgeführt, um zukünftige Leistungsdaten zu spezifizieren. Mit dem Ray - Trace - Simulationspaket McStas wurde das Neutronenstreugerät modelliert und das Zusammenspiel der neutronenoptischen Bauelemente optimiert. Der zweite Teil der Arbeit beschäftigt sich mit Messungen und Rechnungen zum magnetischen Phasendiagramm von CeCu2. Dazu wurden eigene Messungen der Magnetisierung (VSM) und elastische Neutronenstreuexperimente (D23, ILL Grenoble) einer McPhase - Rechnung gegenübergestellt. Der nächste Abschnitt der Arbeit befasst sich mit elastischen und inelastischen Neutronenstreuexperimenten (IN12 & IN20, ILL Grenoble) an CeCu2 Einkristallen. Diese Messungen untersuchen die statischen (Struktur, Phasendiagramm) sowie dynamischen Eigenschaften (Anregungen) in dieser Substanz. Insbesondere beschäftigen sich diese Messungen mit den Dispersionsrelationen der Magnonen in hohen magnetischen Feldern bis zu mu0H = 12 Tesla. Für diese Experimente wurde eine neue Probenbox für den Einsatz in Hochfeldmagneten entwickelt, welche die Probe fixiert und in einer Schutzgasatmosphäre einschließt. In den Messungen wurde eine unerwartete, dispersionslose Anregung gefunden, welche mit dem derzeitigen Spinwellenmodell unverträglich ist. Bei Erhöhung des Magnetfeldes steigt die Anregungsenergie doppelt so schnell, wie von gewöhnlichen Magnonen erwartet wird. Zur Erklärung wird ein neutroneninduzierter pi/2 - Spinflop - Prozess vorgeschlagen. In einer anderen Messung wurde mit polarisierten Neutronen nach dem bisher indirekt nachgewiesenen, ersten angeregten Kristallfeldniveau bei 9 Millielektronenvolt gesucht. Bei wachsenden Temperaturen konnte kaum magnetische Streuintensität unterhalb 10 Millielektronenvolt gefunden werden. Jedoch wurde eine stark verbreiterte Intensität von 8 bis 15 Millielektronenvolt gemessen. Diese Energie korreliert mit dem Übergang zwischen den angeregten Kristallfeldniveaus. Als Ursache für die Verbreiterung wird eine Kristallfeld - Phonon - Wechselwirkung angegeben. Aus dem Vergleich der in verschiedenen Richtungen gemessenen magnetischen Streuintensitäten des 23 Millielectronvolt Kristallfeldüberganges können dessen Übergangsmatrixelemente abgeschätzt werden. Diese wurden den errechneten Werten der veröffentlichten Kristallfeldparametersätze gegenübergestellt. Es zeigte sich, dass die alten Parametersätze die neuen Messdaten nicht beschreiben können. Deshalb wurde ein neuer Satz aufgestellt, welcher erstmals sowohl die makroskopischen Messungen als auch die Neutronenstreuexperimente erklärt. / In this thesis, the electronic and magnetic properties of the heavy-fermion system CeCu2 are investigated. For that purpose, measurements of susceptibility, magnetisation and specific heat from literature are compared with each other and are compared with neutron-scattering experiments performed for the present work. One part of the thesis is addressed to the design of the new triple-axis spectrometer PANDA, which is situated at the research reactor FRM2 in Munich. Extensive simulations were performed with the ray - tracing simulation package McStas in order to model this neutron scattering instrument and to optimise its neutron optic elements. The second part of this work deals with measurements and calculations of the magnetic phase diagram of CeCu2. The experiments include the macroscopic magnetisation (VSM) and elastic neutron-scattering measurements (D23, ILL Grenoble). The McPhase calculations are in a good agreement with the experiments. The next part presents elastic and inelastic neutron-scattering experiments (IN12 & IN20, ILL Grenoble) at CeCu2 single crystals. These measurements investigate the static (phase diagram) as well as dynamic properties (excitations) of this compound. Especially, the experiments are concentrated on the investigation of the dispersion relation of magnons in magnetic fields up to mu0H = 12 tesla. For these measurements, a new sample holder suitable for use in high magnetic fields was designed, which fixes the sample in a hermetically sealed containment. In the experiments an unexpected dispersionless excitation was observed, which does not fit the standard magnon model. With increasing magnetic field the energy of this excitation increases with a slope of twice the value expected for regular magnons. A neutron - induced pi/2 spin - flop process is proposed to explain this excitation. In another measurement with polarised neutrons the first excited crystal - field level at 9 millielectronvolt, which has not been directly detected up to now, was investigated. With increasing temperature, only small magnetic scattering intensity occurs below 10 millielectronvolt. >From 8 to 15 millielectronvolt a broad signal was detected, which corresponds to the energy of the transition between the two excited levels. Due to a strong crystal field - phonon interaction, the width is unusually broadened. The transition matrix elements can be estimated from the comparison of the components of the magnetic scattering intensities of the 23 millielectronvolt crystal - field transition. These values were compared with the calculated values from published crystal-field parameter sets. The old sets cannot explain the new measurements. A new set was derived which accounts for the macroscopic measurements and for the neutron - scattering data, too.
8

Magneto-optics of complex oxides at terahertz frequencies

Jones, Samuel Peter Philip January 2014 (has links)
This thesis presents experimental results on two complex oxide systems: Cu<sub>1-x</sub>Zn<sub>x</sub>O and La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>:ZnO. The dynamic magnetoelectric response of these materials is obtained using terahertz time-domain spectroscopy, supported by Fourier-transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. Evidence for an electromagnon in the multiferroic phase of CuO is presented for the first time. This high temperature (213-230K) electromagnon is linked to intersublattice exchange between two Cu sublattices. The temperature dependence of a magnon in the collinear antiferromagnetic phase is indicative of biquadratic exchange. Broadening of the multiferroic phase on substitution of copper with zinc is reported along with a 25% depression of the Néel temperature due to spin dilution. Phonons and magnons broaden and shift in energy on alloying. However, the electromagnon is relatively insensitive, increasing in energy without widening. This indicates that electromagnons and dynamic magnetoelectric coupling can be mantained even in disordered spin systems. Strong spin-phonon coupling is present in both magnetically ordered phases as shown by the anomalous behavior of the A<sup>3</sup><sub style='position: relative; left: -.5em;'>u</sub> phonon at T<sub>N1</sub> and a Raman-active mode associated with a magnetic modulation of a zone-folded acoustic phonon. Dynamic 1THz magnetoresistance is found to be significantly larger than static magnetoresistance in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>:ZnO vertically-aligned nanocolumns on LaAlO<sub>3</sub> substrates. The metal-insulator transition temperature is determined to be 300 K. Temperature dependent static and dynamic resistivity and magnetoresistance are discussed in terms of strain and grain boundary effects. Negative photoconductivity is observed and the dynamic response analysed.
9

Lattice dynamics and spin-phonon coupling in the multiferroic oxides Eu(1-x)Ho(x)MnO3 and ACrO2 / Gitterdynamik und Spin-Phonon Kopplung in den multiferroischen Oxiden Eu(1-x)Ho(x)MnO3 und ACrO2

Elsässer, Sebastian January 2019 (has links) (PDF)
The focus of this thesis is the investigation of the lattice dynamics and the coupling of magnetism and phonons in two different multiferroic model systems. The first system, which constitutes the main part in this work is the system of multiferroic manganites RMnO$_{3}$, in particular Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ with $0 \le x \le 0.5$. Its cycloidal spin arrangement leads to the emergence of the ferroelectric polarization via the inverse Dzyaloshinskii-Moriya interaction. This system is special among RMnO$_{3}$ as with increasing Ho content $x$, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ does not only become multiferroic, but due to the exchange interaction with the magnetic Ho-ion, the spin cycloid (and with it the electric polarization) is also flipped for higher Ho contents. This makes it one of the first compounds, where the cycloidal reorientation happens spontaneously, rather than with the application of external fields. On the other hand, there is the delafossite ACrO$_{2}$ system. Here, due to symmetry reasons, the spin-spiral pattern can not induce the polarization according to the inverse Dzyaloshinskii-Moriya interaction mechanism. Instead, it is thought that another way of magnetoelectric coupling is involved, which affects the charge distribution in the $d-p$ hybridized orbitals of the bonds. The lattice vibrations as well as the quasi-particle of the multiferroic phase, the electromagnon, are studied by Raman spectroscopy. Lattice vibrations like the B$_{3g}$(1) mode, which involves vibrations of the Mn-O-Mn bonds modulate the exchange interaction and serve as a powerful tool for the investigation of magnetic correlations effects with high frequency accuracy. Raman spectroscopy acts as a local probe as even local magnetic correlations directly affect the phonon vibration frequency, revealing coupling effects onto the lattice dynamics even in the absence of global magnetic order. By varying the temperature, the coupling is investigated and unveils a renormalization of the phonon frequency as the magnetic order develops. For Eu$_{1-x}$Ho$_{x}$MnO$_{3}$, the analysis of this spin-induced phonon frequency renormalization enables the quantitative determination of the in-plane spin-phonon coupling strengths. This formalism, introduced by Granado et al., is extended here to evaluate the out-of-plane coupling strengths, which is enabled by the identification of a previously elusive feature as a vibrational mode. The complete picture is obtained by studying the lattice- and electromagnon dynamics in the magnetic field. Further emphasis is put towards the development of the cycloidal spin structure and correlations with temperature. A new model of describing the temperature-dependent behavior of said spin correlations is proposed and can consistently explain ordering phenomena which were until now unaddressed. The results are underscored with Monte Carlo based simulations of the spin dynamics with varying temperature. Furthermore, a novel effect of a tentative violation of the Raman selection rules in Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ was discovered. While the phonon modes can be separated and identified by their symmetry by choosing appropriate polarization configurations, in a very narrow temperature range, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ shows an increase of phonon intensities in polarization configurations where they should be forbidden. This is interpreted as a sign of local disorder, caused by 90° domain walls and could be explained within the model framework. This course of action is followed with the material system of delafossites ACrO$_{2}$. Being a relatively new class of multiferroic materials, the investigations on ACrO$_{2}$ are also of characterizing nature. For this, shell model calculations are performed as a reference to compare the vibrational frequencies obtained by the Raman experiments to. A renormalization of the vibrational frequencies is observed in this system as well and systematically analyzed across the sample series of \textit{A}=Cu, Pd and Ag. Eventually, the effect of applying an external magnetic field is studied. A particularly interesting feature specific for CuCrO$_{2}$ is a satellite peak which appears at lower temperatures. It is presumably related to a deformation of the lattice and therefore going to be discussed in further detail. / Mit der Entdeckung des Riesenmagnetoelektischen Effekts (Giant Magnetoelectric Effect) in TbMnO$_{3}$ durch Kimura et al., im Jahre 2003, erlebte das Forschungsgebiet der multiferroischen Seltenerdmanganate RMnO$_{3}$ einen neuen Aufschwung durch die neuen Möglichkeiten, die sich durch diese Entdeckung offenbarten. \cite{Kimura2003} Der Effekt besteht darin, dass sich durch ein bestimmtes Muster der magnetischen Ordnung eine direkt an dieses Muster gekoppelte ferroelektrische Polarisation ergibt. Die Kopplung von magnetischer und ferroelektrischer Ordnung bewirkt, dass stets beide Parameter simultan beeinflusst werden, wenn ein externes elektrisches oder magnetisches Feld angelegt wird: Wird das Magnetisierungsmuster durch ein externes Magnetfeld beeinflusst, wirkt sich dies direkt auf die elektrische Polarisation aus. Umgekehrt, wenn die Polarisation durch ein elektrisches Feld beeinflusst wird, ist die magnetische Ordnung entsprechend betroffen. Dies erlaubt die vollständige Umordnung der elektrischen Polarisation durch ein magnetisches Feld oder der magnetischen Ordnung durch ein elektrisches Feld. Materialien, die mindestens zwei ferroische Eigenschaften, in diesem Fall eine spontane Magnetisierung und spontane elektrische Polarisation, in der gleichen Phase aufweisen, werden als Multiferroika bezeichnet. Diese allgemeine Klassifikation ist noch zu unterteilen in Typ-I und Typ-II Multiferroika. Zu Typ-I Multiferroika zählen Systeme wie BiFeO$_{3}$, bei denen die ferroelektrische und die magnetische Ordnung weitestgehend unabhängig voneinander und daher bei verschiedenen Temperaturen einsetzen ($T_{C} = 1100$~K für die ferroelektrische, $T_{N}=$ 643~K für die magnetische Ordnung \cite{Khomskii2009}). Dementsprechend sind Magnetisierung und Polarisation in diesem System kaum miteinander gekoppelt. Demgegenüber stehen die hier betrachteten Systeme der orthorhombischen RMnO$_{3}$ Seltenerdmanganate und der ACrO$_{2}$ Delafossite, die der Gruppe der Typ-II Multiferroika angehören. Hier ist die magnetische Ordnung die direkte Ursache der ferroelektrischen Polarisation, d.h. beide Phänomene treten simultan ab der gleichen Ordnungstemperatur auf. Das Ziel von Forschungsbemühungen auf diesem Gebiet der Multiferroika ist zum Einen, neue Materialien zu finden, die solcherlei Kopplungseffekte zeigen. Zum Anderen gilt es, den Effekt besser nutzbar zu machen, sei es durch eine größere Kopplungsstärke oder durch höhere mögliche Ordnungstemperaturen. Um dies zu erreichen ist es von essentieller Bedeutung die zu Grunde liegenden mikroskopischen Mechanismen zu ergründen, diese zu studieren und schließlich ein besseres Verständnis der multiferroischen Kopplungsmechanismen zu erlangen. In dieser Dissertation liegt der Fokus auf der systematischen Untersuchung von Kopplungseffekten zwischen der magnetischen Ordnung und der Dynamik des Kristallgitters mittels Ramanspektroskopie. Insbesondere werden Renormalisierungseffekte der Frequenzen der Gitterschwingungen untersucht, die sich durch die Ausbildung der magnetischen Ordnung und Kopplung derselben an die Gitterdynamik ergeben, die sogenannte Spin-Phonon Kopplung (SPC). Zu diesem Zweck werden die spektroskopischen Experimente mit Augenmerk auf die Polarisations-, Temperatur- und Magnetfeldabhängigkeit der ramanaktiven Moden durchgeführt. Dabei werden Serien von Proben zweier Materialsysteme untersucht, bei denen sich die multiferroische Phase durch unterschiedliche Mechanismen ausbildet: Zum Einen das System Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ ( $0 \le x \le 0.5$), welches zu den orthorhombischen RMnO$_{3}$ Systemen zählt und sowohl multiferroische als auch nicht-multiferroische Proben umfasst. Hierbei beruht der magnetoelektrische Effekt auf der inversen Dzyaloshinskii-Moriya Wechselwirkung. Im Vergleich dazu wird außerdem das System der ACrO$_{2}$ Delafossite mit A= Cu, Ag, Pd untersucht. Dieses System ist im Kontext der Multiferroika noch als relativ neu anzusehen. Hier kann die inverse Dzyaloshinskii-Moriya Wechselwirkung aus Symmetriegründen ausgeschlossen werden, sodass ein neuartiger magnetoelektrischer Kopplungsmechanismus vorliegt. Durch die Spin-Bahn Kopplung verschiebt sich die Gewichtung der Ladungsverteilung der Bindungen und führt dadurch zur Entstehung der elektrischen Polarisation. Im Vergleich der beiden Systeme, werden die Unterschiede der Spin-Phonon Kopplungsstärken und der Einfluss von lokalen Ordnungseffekten diskutiert.
10

Topological Phases with Crystalline Symmetries

Lu, Fuyan 09 October 2018 (has links)
No description available.

Page generated in 0.0357 seconds