11 |
Studies of Topological Phases of Matter : Presence of Boundary Modes and their Role in Electrical TransportDeb, Oindrila January 2017 (has links) (PDF)
Topological phases of matter represent a new phase which cannot be understood in terms of Landau’s theory of symmetry breaking and are characterized by non-local topological properties emerging from purely local (microscopic) degrees of freedom. It is the non-trivial topology of the bulk band structure that gives rise to topological phases in condensed matter systems. Quantum Hall systems are prominent examples of such topological phases. Different quantum Hall states cannot be distinguished by a local order parameter. Instead, non-local measurements are required, such as the Hall conductance, to differentiate between various quantum Hall states. A signature of a topological phase is the existence of robust properties that do not depend on microscopic details and are insensitive to local perturbations which respect appropriate symmetries. Examples of such properties are the presence of protected gapless edge states at the boundary of the system for topological insulators and the remarkably precise quantization of the Hall conductance for quantum Hall states. The robustness of these properties can be under-stood through the existence of a topological invariant, such as the Chern number for quantum Hall states which is quantized to integer values and can only be changed by closing the bulk gap. Two other examples of topological phases of matter are topological superconductors and Weyl semimetals. The study of transport in various kinds of junctions of these topological materials is highly interesting for their applications in modern electronics and quantum computing. Another intriguing area to study is how to generate new kind of gapless edge modes in topological systems.
In this thesis I have studied various aspects of topological phases of matter, such as electronic transport in junctions of topological insulators and topological superconductors, the generation of new kinds of boundary modes in the presence of granularity, and the effects of periodic driving in topological systems. We have studied the following topics.
1. transport across a line junction of two three-dimensional topological insulators,
2. transport across a junction of topological insulators and a superconductor,
3. surface and edge states of a topological insulator starting from a lattice model,
4. effects of granularity in topological insulators,
5. Majorana modes and conductance in systems with junctions of topological superconducting wires and normal metals, and
6. generation of new surface states in a Weyl semimetal in the presence of periodic driving by the application of electromagnetic radiation.
A detailed description of each chapter is given below.
• In the first chapter we introduce a number of concepts which are used in the rest of the thesis. We will discuss the ideas of topological phases of matter (for example, topological insulators, topological superconductors and Majorana modes, and Weyl semimetals), the renormalization group theory for weak interactions, and Floquet theory for periodically driven systems.
• In the second chapter we study transport across a line junction which separates the surfaces of two three-dimensional topological insulators. The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs. For a time-reversal invariant system, we show that the line junction is characterized by an arbitrary real parameter α; this determines the scattering amplitudes (reflection and transmission) from the junction. The physical origin of α is a potential barrier that may be present at the junction. If the surface velocities have the same sign, edge states exist that propagate along the line junction with a velocity and orientation of the spin which depend on α and the ratio of the velocities. Next, we study what happens if the two surfaces are at an angle φ with respect to each other. We study the scattering and differential conductance across the line junction as functions of φ and α. We also show that there are edge states which propagate along the line junction with a velocity and spin orientation which depend on φ. Finally, if the surface velocities have opposite signs, we find that the electrons must necessarily transmit into the two-dimensional interface separating the two topological insulators.
• In the third chapter we discuss transport across a line junction lying between two orthogonal topological insulator surfaces and a superconductor which can have either s-wave (spin-singlet) or p-wave (spin-triplet) pairing symmetry. This junction is more complicated than the line junction discussed in the previous chapter because of the presence of the superconductor. In a topological insulator spin-up and spin-down electrons get coupled while in a superconductor electrons and holes get coupled. Hence we have to use a four-component spinor formalism to describe both spin and particle-hole degrees of freedom. The junction can have three time-reversal invariant barriers on the three sides. We compute the subgap charge conductance across such a junction and study their behaviors as a function of the bias voltage applied across the junction and the three parameters which characterize the barriers. We find that the presence of topological insulators and a superconductor leads to both Dirac and Schrodinger-like features in the charge conductances. We discuss the effects of bound states on the superconducting side on the conductance; in particular, we show that for triplet p-wave superconductors such a junction may be used to determine the spin state of its Cooper pairs.
• In the fourth chapter we derive the surface Hamiltonians of a three-dimensional topological insulator starting from a microscopic model. (This description was not discussed in the previous chapters where we directly started from the surface
Hamiltonians without deriving them form a bulk Hamiltonian). Here we begin from the bulk Hamiltonian of a three-dimensional topological insulator Bi2Se3. Using this we derive the surface Hamiltonians on various surfaces of the topological insulator, and we find the states which appear on the different surfaces and along the edge between pairs of surfaces. The surface Hamiltonians depend on the orientation of the surfaces and are therefore quite different from the previous chapters. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based directly on a lattice discretization of the bulk Hamiltonian in order to find surface and edge states. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge are studied as a function of the edge potential. We show that a magnetic field applied in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
• In the fifth chapter we study a system made of topological insulator (TI) nanocrystals which are coupled to each other. Our theoretical studies are motivated by the
following experimental observations. Electrical transport measurements were carried out on thin films of nanocrystals of Bi2Se3 which is a TI. The measurements reveal that the entire system behaves like a single TI with two topological surface states at the two ends of the system. The two surface states are found to be coupled if the film thickness is small and decoupled above a certain film thickness. The surface state penetration depth is found to be unusually large and it decreases with increasing temperature. To explain all these experimental results we propose a theoretical model for this granular system. This consists of multiple grains of Bi2Se3 stacked next to each other in a regular array along the z-direction (the c-axis of Bi2Se3 nanocrystals). We assume translational invariance along the x and y directions. Each grain has top and bottom surfaces on which the electrons are described by Hamiltonians of the Dirac form which can be derived from the bulk Hamiltonian known for this material. We introduce intra-grain tunneling couplings t1 between the opposite surfaces of a single grain and inter-grain couplings t2 between nearby surfaces of two neighboring grains. We show that when t1 < t2 the entire system behaves like a single topological insulator whose outermost surfaces have gapless spectra described by Dirac Hamiltonians. We find a relation between t1, t2 and the surface state penetration depth λ which explains the properties of λ that are seen experimentally. We also present an expression for the surface state Berry phase as a function of the hybridization between the surface states and a Zeeman magnetic field that may be present in the system. At the end we theoretically studied the surface states on one of the side surfaces of the granular system and showed that many pairs of surface states can exist on the side surfaces depending on the length of the unit cell of the granular system.
• In the sixth chapter we present our work on junctions of p-wave superconductors (SC) and normal metals (NM) in one dimension. We first study transport in a system where a SC wire is sandwiched between two NM wires. For such a system it is known that there is a Majorana mode at the junction between the SC and each NM lead. If the p-wave pairing changes sign at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the subgap conductance between the leads and the SC. We derive an analytical expression as a function of and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the energies oscillate and decay exponentially as L is increased. The energies exactly match the locations of the peaks in the conductance. We find that the subgap conductances do not change noticeably with the sign of . So there is no effect of the extra Majorana modes which appear inside the SC (due to changes in the signs of Δ) on the subgap conductance.
Next we study junctions of three p-wave SC wires which are connected to the NM leads. Such a junction is of interest as it is the simplest system where braiding of Majorana modes is possible. Another motivation for studying this system is to see if the subgap transport is affected by changes in the signs of . For sufficiently long SCs, there are zero energy Majorana modes at the junctions between the SCs and the leads. In addition, depending on the signs of the Δ’s in the three SCs, there can also be one or three Majorana modes at the junction of the three SCs. We show that the various subgap conductances have peaks occurring at the energies of all these modes; we therefore get a rich pattern of conductance peaks. Next we study the effects of interactions between electrons (in the NM leads) on the transport. We use a renormalization group approach to study the effect of interactions on the conductance at energies far from the SC gap. Hence the earlier part of this chapter where we studied the transport at an energy E inside the SC gap (so that − < E < Δ) differs from this part where we discuss conductance at an energy E where |E| ≫ . For the latter part we assume the region of three SC wires to be a single region whose only role is to give rise to a scattering matrix for the NM wires; this scattering matrix has both normal and Andreev elements (namely, an electron can be reflected or transmitted as either an electron or a hole). We derive a renormalization group equation for the elements of the scattering matrix by assuming the interaction to be sufficiently weak. The fixed points of the renormalization group flow and their stabilities are studied; we find that the scattering matrix at the stable fixed point is highly symmetric even when the microscopic scattering matrix and the interaction strengths are not symmetric. Using the stability analysis we discuss the dependence of the conductances on the various length scales of the problem. Finally we propose an experimental realization of this system which can produce different signs of the p-wave pairings in the different SCs.
• In the seventh chapter we show that the application of circularly polarized electro-magnetic radiation on the surface of a Weyl semimetal can generate states at that surface. The surface states can be characterized by their momenta due to translation invariance. The Floquet eigenvalues of these states come in complex conjugate pairs rather than being equal to ±1. If the amplitude of the radiation is small, we find some unusual bulk-boundary relations: the Floquet eigenvalues of the surface states lie at the extrema of the Floquet eigenvalues of the bulk system when the latter are plotted as a function of the momentum perpendicular to the surface, and the peaks of the Fourier transforms of the surface state wave functions lie at the momenta where the bulk Floquet eigenvalues have extrema. For the case of zero surface momentum, we can analytically derive interesting scaling relations between the decay lengths of the surface states and the amplitude and penetration depth of the radiation. For topological insulators, we again find that circularly polarized radiation can generate states on the surfaces; these states have much larger decay lengths (which can be tuned by the radiation amplitude) than the topological surface states which are present even in the absence of radiation. Finally, we show that radiation can generate surface states even for trivial insulators.
|
12 |
Moléculas de Andreev mediadas por férmions de Majorana /Sanches, José Eduardo Cardozo. January 2020 (has links)
Orientador: Antonio Carlos Ferreira Seridonio / Resumo: Estudou-se teoricamente um modelo composto por um fio de Kitaev na fase topológica com dois pontos quânticos (QDs - Quantum Dots), um em cada extremidade do nanofio. Desta forma, dois casos foram factíveis de análise, um deles com os estados ligados de Majorana (MBSs - Majorana Bound States) das bordas do fio acoplados a um único QD e o segundo em que se tem ambos os MBSs acoplados aos dois QDs. Para a primeira situação três condições foram estudadas, nas quais se verificou, na primeira, os perfis de férmions de Majorana não locais, dados pelo acoplamento entre o MBS e o QD mais próximo e, nas outras duas condições, dois perfis relacionados aos acoplamentos dos dois MBSs a um QD, em que se considerou também a superposição entre os MBS. Estes dois perfis são denominados de bowtie e diamond, já conhecidos na literatura, possuindo também experimentos que validam suas manifestações. No segundo caso, em que se tem o acoplamento dos dois MBSs aos dois QDs e que se considerou também amplitudes de superposição entre os férmions de Majorana, investigou-se a manifestação de estados moleculares mediados por tais férmions, pois o transporte eletrônico entre os QDs, no sistema proposto, se dá por meio do nanofio. Constatou-se padrões condizentes a níveis moleculares ligante e antiligante nas assinaturas dos estados ligados de Andreev (ABSs), originários da superposição dos MBSs, assim como nos níveis dos QDs que foram desdobrados após a formação molecular. / Mestre
|
13 |
Kitaev Honeycomb Model: Majorana Fermion Representation and DisorderZschocke, Fabian 14 June 2016 (has links)
Eine Vielzahl von interessanten Phänomenen entsteht durch die quantenmechanischeWechselwirkung einer großen Zahl von Teilchen. In den meisten Fällen ist die Beschreibung der relevanten physikalischen Eigenschaften extrem schwierig, da die Komplexität des Systems exponentiell mit der Anzahl der wechselwirkenden Teilchen anwächst und das Lösen der zugrunde liegenden Schrödingergleichung unmöglich macht. Trotzdem gab es in der Geschichte der Festkörperphysik eine Reihe von bahnbrechenden Entdeckungen, die unser Verständnis von komplexen Phänomenen deutlich voran gebracht haben. Dazu zählt die Entwicklung der Landau’schen Theorie der Fermiflüssigkeit, der BCS-Theorie der Supraleitung, der Theorie der Supraflüssigkeit und der Theorie des fraktionalen Quanten-Hall-Effekts. In all diesen Fällen ist ein theoretisches Verständnis mithilfe sogenannter Quasiteilchen gelungen. Anstatt ein komplexes Phänomen durch das Verhalten von fundamentalen Teilchen wie der Elektronen zu erklären, ist es möglich, die entsprechenden Eigenschaften durch das simple Verhalten von Quasiteilchen zu beschreiben, die allein auf Grund der komplexen kollektiven Wechselwirkung entstehen.
Eines der seltenen Beispiele, bei dem ein stark korreliertes quantenmagnetisches Problem analytisch lösbar ist, ist das Kitaev Modell. Es beschreibt wechselwirkende Spins auf einem Sechseck-Gitter und zeichnet sich durch einen Spinflüssigkeits-Grundzustand aus. Auch hier gelang die Lösung mittels spezieller Quasiteilchen, den Majorana Fermionen. Experimentell ist es jedoch noch nicht gelungen eine Spinflüssigkeit eindeutig nachzuweisen, da diese sich gerade durch das Fehlen jeglicher klassischer Ordnung und üblicher experimenteller Kenngrößen auszeichnet. Dagegen kann die Beobachtung von Quasiteilchenanregungen einen Hinweis auf den zugrunde liegenden Zustand liefern. Aber auch der definitive Nachweis von Majorana Fermionen in jeglicher Art System, bleibt ein ausstehendes Ziel in der modernen Festkörperphysik. Diese Arbeit befasst sich daher mit der Frage, wie solche Quasiteilchen experimentell sichtbar gemacht werden könnten. Dazu untersuchen wir den Einfluss von Unordnung auf die Zustände und Messgrößen des Kitaev Modells. Dies ist in zweierlei Hinsicht relevant. Einerseits ist Unordnung in der Natur allgegenwärtig, andererseits kann sie auch strategisch herbeigeführt werden, um die Reaktion eines System gezielt zu testen. Das zentrale Ergebnis dieser Arbeit ist, dass den Majorana Fermionen dabei in der Tat eine physikalische, messbare Bedeutung zukommt.
Die Arbeit beginnt mit einer Einführung in frustrierte quantenmagnetische Systeme und Spinflüssigkeiten und diskutiert einige Effekte, die durch Gitterverzerrungen oder Verunreinigungen entstehen können. Anschließend zeigen wir, wie sich durch die frustrierte Wechselwirkung im Kitaev Modell ein Spinflüssigkeits-Grundzustand herausbildet. Die analytische Lösung des Modells gelingt mit Hilfe von Majorana Fermionen, jedoch verdoppelt sich der Hilbertraum pro Spin durch die Einführung dieser Quasiteilchen. Ein zentraler Aspekt dieser Arbeit ist daher die richtige Auswahl der „physikalischen“ Zustände, also solcher, die einem Zustand im ursprünglichen Spin Modell entsprechen. Dabei unterscheiden wir zwischen offenen und periodischen Randbedingungen. Wir konnten beweisen, dass sich, in der Phase ohne Bandlücke und für periodische Systeme, stets ein angeregtes Fermion befindet. Dies führt zu großen Effekten in endlichen Systemen, wie wir anhand der Suszeptibilität und der Anregungslücke für magnetische Flüsse zeigen. Außerdem berechnen wir numerisch die statische und dynamische Suszeptibilität abhängig von der Unordnung in der Wechselwirkungsstärke.
Diese Art der Unordnung entsteht beispielsweise durch unregelmäßige Gitterstrukturen oder chemische Verunreinigungen auf den nicht-magnetischen Gitterplätzen. Insbesondere ergibt die Verteilung der lokalen Suszeptibilitäten das Linienspektrum, welches sich in Kernspinresonanz Experimenten messen lässt. Für große Unordnung postulieren wir einen Übergang zu einem Zustand mit einer zufälligen Verteilung magnetischer Flüsse. Ein weiterer Kern der Dissertation ist die Untersuchung eines magnetischen Defekts im Kitaev Modell. Diese Situation beschreibt den ungewöhnlichen Fall eines Kondoeffekts in einer Spinflüssigkeit. In der Majorana Fermionen Darstellung gelingt es uns, das Problem in eine Form zu bringen, die mit Hilfe von Wilson’s numerischer Renormalisierungsgruppe untersucht werden kann. Es zeigt sich, dass dadurch eine Nullpunktsentropie des Defekts entsteht, die durch lokalisierte Majorana Fermionen erklärt werden kann.
Durch die Darstellung des Kitaev Modells mithilfe von Quasiteilchen ist es möglich eine elegante Beschreibung eines komplexen, stark wechselwirkenden Systems zu finden. Die Ergebnisse dieser Arbeit zeigen, dass den Majorana Fermionen dabei durchaus eine physikalische Bedeutung zukommt. Gelingt es sie z.B. durch magnetische Störstellen zu lokalisieren, wäre ein direkter experimenteller Nachweis möglich. / Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schrödinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau’s theory of Fermi liquids, the BCStheory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction.
One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states and observables of the Kitaev model. This is relevant in two respects: Firstly, disorder is ubiquitous in nature and secondly, it may be used strategically to probe the response of a system. The central result of this work is that Majorana fermions hereby indeed obtain a true physical and observable significance.
The thesis starts with an introduction of frustrated quantum mechanical systems and spin liquids, and discusses some of the effects that arise through lattice distortions or impurities. Afterwards we show how the frustrated interactions in the Kitaev model lead to a spin liquid ground state. The analytical solution of the model is achieved through the introduction of Majorana fermions. However, resulting from the introduction of these quasi-particles the Hilbert space per spin doubles. A central aspect of this thesis is therefore the right selection of the “physical” states, which correspond to a state of the original spin Hamiltonian. To do this, we distinguish between periodic and open boundary conditions explicitly. We were able to prove that there is always one excited fermion in the gapless phase of the periodic system. This leads to large finite-size effects, as we will illustrate for the susceptibility and the magnetic flux gap. Moreover we compute the static and dynamic spin susceptibilities for finite-size systems subject to disorder in the exchange couplings. In a possible experimental realization, this kind of disorder arises from lattice distortions or chemical disorder on nonmagnetic sites. Specifically, we calculate the distribution of local susceptibilities and extract the lineshape, which can be measured in nuclear-magnetic-resonance experiments. Further, for increasing disorder we predict a transition to a random-flux state.
Another core of this dissertation is the investigation of a magnetic impurity in the Kitaev model. This setup represents the unusual case of a Kondo effect in a quantum spin liquid. Utilizing the Majorana representation we are able to formulate the problem in a way that can be analyzed using Wilson’s numerical renormalization group. The numerics reveal an impurity entropy which can be explained by localized Majorana fermions. Through the representation of the Kitaev model in terms of quasi-particles an elegant description of a complex, strongly correlated system is possible. The results of this thesis indicate that these Majorana acquire a relevant physical meaning. If one can localize them, for example with the help of magnetic impurities, a direct experimental observation would be feasible.
|
14 |
Exploring quantum circuits with a cQed architecture : application to compressibility measurements / Explorer des circuits quantiques avec une architecture cQED : application à des mesures de compressibilitéDesjardins, Matthieu 16 December 2016 (has links)
Les circuits électroniques mesurés à des températures cryogéniques permettent d'étudier le comportement quantique des électrons. En particulier, les circuits de boites quantiques sont des systèmes accordables modèles pour l'étude des électrons fortement corrélés, symbolisée par l'effet Kondo. Dans cette thèse, des circuits de boîtes quantiques à base de nanotube de carbone sont intégrés à des cavités micro-onde coplanaires, avec lesquelles l'électrodynamique quantique en cavité (cQED) a atteint un degré de contrôle remarquable de l'interaction lumière-matière. Les photons de la cavité micro-onde sont ici utilisés pour sonder la dynamique de charge dans le circuit de boîtes quantiques. Plus précisément, la cavité micro-onde de grande finesse nous a permis de mesurer la compressibilité du gas d'électrons dans une boîte avec une sensibilité sans précédent. Des mesures simultanées de transport électronique et de la compressibilité montrent que la résonance Kondo observées dans la conductance est transparente aux photons micro-ondes. Cela révèle le gel de la dynamique de charge dans la boîte quantique pour ce mécanisme particulier de transport d'électrons et illustre que la résonance Kondo à N-corps dans la conductance est associée aux corrélations issues des fluctuations de spin d'une charge gelée. Nous étudions aussi dans cette thèse la possible émergence d'une nouvelle quasi-particule, appelée état lié de Majorana, et qui serait sa propre anti-particule. Dans ce but, une grille ferromagnétique a été placée sous le nanotube pour créer un couplage spin-orbit artificiel. L'observation d'états d'Andreev dans un tel dispositif est un premier pas prometteur vers la détection avec une architecture cQED d'états liés de Majorana dans les nanotubes de carbone. / On-chip electronic circuits at cryogenic temperature are instrumental to studying the quantum behavior of electrons. In particular, quantum dot circuits represent tunable model systems for the study of strong electronic correlations, epitomized by the Kondo effect. In this thesis, carbon nanotube based-quantum dot circuits are embedded in coplanar microwave cavities, with which circuit quantum electrodynamics (cQED) has reached a high degree of control of the light-matter interaction. Here, microwave cavity photons are used to probe the charge dynamics in the quantum dot circuit. More precisely, the high finesse cavity allows us to measure the compressibility of the electron gas in the dot with an unprecedented sensitivity. Simultaneous measurements of electronic transport and compressibility show that the Kondo resonance observed in the conductance is transparent to microwave photons. This reveals the predicted frozen charge dynamics in the quantum dot for this peculiar electron transport mechanism and illustrates that the many-body Kondo resonance in the conductance is associated to correlations arising from spin fluctuations of a frozen charge. A second quantum phenomenon addressed in this thesis is the possible emergence of a new quasi-particle in condensed matter, called Majorana bound state, which would be its own anti-particle. For that purpose, a ferromagnetic gate has been placed below a nanotube in order to generate a synthetic spin-orbit coupling. The observation of Andreev bound states in such a device is a first promising step towards the detection with a cQED architecture of Majorana bound states in a carbon nanotube.
|
15 |
Correlations and quantum dynamics of 1D fermionic models : new results for the Kitaev chain with long-range pairing / Corrélations et dynamique quantique de modèles de fermions 1D : nouveaux résultats sur la chaîne de Kitaev avec pairing à longue portéeVodola, Davide 20 February 2015 (has links)
La première partie de la thèse étudie le diagramme de phase d’une généralisation de la chaîne de Kitaev qui décrit un système fermionique avec un pairing p-wave à long rayon qui tombe avec la distance ℓ comme 1/ℓα. On a analysé les lignes critiques, les corrélations et le comportement de l’entropie d’entanglement avec la taille du système. Nous avons démontré l’existence de deux régimes massifs, (i) où les fonctions de corrélation tombent exponentiellement à de courtes distances et comme puissance à de longues distances (α > 1), (ii) où elles tombent à puissance seulement (α < 1). Dans la seconde région l’entropie d’intrication d’un sous-système diverge logarithmiquement. Remarquablement, sur les lignes critiques, le pairing à long rayon brise la symètrie conforme du modèle pour des α suffisamment petits. On a prouvé ça en calculant aussi l’évolution temporelle de l’entropie d’intrication après un quench. Dans la seconde partie de la thèse nous avons analysé la dynamique de l’entropie d’intrication du modèle d’Ising avec un champ magnétique qui dépend linéairement du temps avec de différentes vitesses. Nous avons un régime adiabatique (de basses vitesses) lorsque le système évolue selon son état fondamental instantané; un sudden quench (de hautes vitesses) lorsque le système est congelé dans son état initial; un régime intermédiaire où l’entropie croît linéairement et, ensuite, elle montre des oscillations du moment que le système se trouve dans une superposition des états excités de l’Hamiltonienne instantanée. Nous avons discuté aussi du mécanisme de Kibble-Zurek pour la transition entre la phase paramagnétique et antiferromagnétique. / In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance ℓ as a power law 1/ℓα. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range (α > 1), (ii) purely algebraically (α < 1). In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks the conformal symmetry for sufficiently small α. This can be detected also via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instan- taneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase
|
Page generated in 0.0882 seconds