• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 25
  • 13
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 51
  • 39
  • 39
  • 28
  • 24
  • 24
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The life history of Damaraland mole-rats, Fukomys damarensis : growth, ageing and behaviour

Thorley, Jack January 2018 (has links)
The social mole-rats have often been typecast as extreme examples of mammalian sociality. With their pronounced reproductive skew, status-related contrasts in lifespan and morphology, and the suggestion of a division of labour amongst helpers, mole-rat societies have repeatedly been likened to the structurally complex societies of some eusocial insects. However, because few studies of mole-rats have quantified individual variation in growth and behaviour across long periods of development, it has remained unclear the extent to which mole-rat societies, and the features of individuals within them, should be considered unique amongst social vertebrates. In this thesis, I examine life history variation in Damaraland mole-rats Fukomys damarensis from three perspectives- growth, behaviour, and ageing- to explore how individual developmental trajectories contribute to, and are influenced by, the structure of mole-rat societies. First, I use a large longitudinal dataset to test for the presence of behavioural specialisation in non-breeding mole-rat helpers. I find no indication of individual specialisation in cooperative activities. Instead, individual differences in helping behaviour are largely the result of age-related changes in the extent to which individuals commit to all forms of helping (Chapter 3); refuting the notion of helper castes. I then focus on the variation in growth across non-breeders, developing a novel biphasic model to accurately quantify sex differences in growth and explore the influence of social effects on growth trajectories (Chapter 4). Despite the proposition of intense intrasexual competition in mole-rat societies, there was no clear signature of sex-specific competition on helper growth trajectories. A more conspicuous form of socially-mediated growth in mole-rats is the secondary growth spurt displayed by females that have acquired the dominant breeding position, causing them to become larger and more elongated. By experimentally controlling reproduction in age-matched siblings, I show that rather than being stimulated by the removal from reproductive suppression, this adaptive morphological divergence is achieved through a lengthening of the lumbar vertebrae when breeding is commenced (Chapter 5). With contrasts in size and shape following the acquisition of the breeding role, this status-related growth pattern shares similarities with growth in naked mole-rats and other social vertebrates. Breeders also show a twofold greater lifespan than non-breeders in Fukomys mole-rats, prompting the suggestion that the transition to dominance also sets individuals onto a slower ageing trajectory. To date, there is little evidence to support a physiological basis to lifespan extension in breeders. This assertion is bolstered by the absence of longer telomeres or slower rates of telomere attrition in breeding females compared to non-breeding females residing in groups (Chapter 6), each of which might be expected if breeders age more slowly. I argue that previous studies exploring status-related ageing in captive Fukomys mole-rats have overlooked the importance of demographic processes (and associated behavioural influences) on mortality schedules. Irrespective of the proximate basis of the longer lifespan of breeders, at an interspecific level the social mole-rats are unusually long-lived for their size. A recent large-scale comparative analysis concluded that prolonged lifespan is a general characteristic of all mammalian cooperative breeders, but this conclusion is premature, as in most of the major clades containing both cooperative and non-cooperative species there is no consistent trend towards lifespan extension in cooperative species (Chapter 7). In the case of mole-rats, it seems more likely that their exceptional longevity arises principally from their subterranean habits and related reductions in extrinsic mortality. Overall, these findings demonstrate that cooperative breeding has important consequences for individual life histories, but there is no strong basis for the claim that Damaraland mole-rat societies are markedly different in form than other cooperative breeding societies.
102

Abiotic and Biotic Drivers of Turnover and Community Assembly in African Mammals

January 2018 (has links)
abstract: Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen as having shaped the major patterns of human and faunal evolution. Despite the ubiquity of studies linking climate and environmental forcing to evolutionary and ecological shifts in the mammalian fossil record, many central components of this paradigm remain untested or poorly developed. To fill this gap, this dissertation employs biogeographical and macroecological analyses of present-day African mammal communities as a lens for understanding how abiotic change may have shaped community turnover and structure in the eastern African Plio-Pleistocene. Three dissertation papers address: 1) the role of ecological niche breadth in shaping divergent patterns of macroevolutionary turnover across clades; 2) the effect of climatic and environmental gradients on community assembly; 3) the relative influence of paleo- versus present-day climates in structuring contemporary patterns of community diversity. Results of these papers call into question many tenets of current theory, particularly: 1) that niche breadth differences (and, by extension, their influence on allopatric speciation) are important drivers of macroevolution, 2) that climate is more important than biotic interactions in community assembly, and 3) that communities today are in equilibrium with present-day climates. These findings highlight the need to critically reevaluate the role and scale-dependence of climate in mammal evolution and community ecology and to carefully consider potential time lags and disequilibrium dynamics in the fossil record. / Dissertation/Thesis / Doctoral Dissertation Anthropology 2018
103

Composition of the Community of Small Mammals in the Great Basin Desert

Phillips, Samantha Elizabeth 01 August 2018 (has links)
Small mammals are a keystone guild in arid ecosystems; often exhibiting top-down control of the diversity and structure of plant communities. However, changing climate, shifting fire regimes, and the invasion of exotic plants are modifying the structure of arid systems. Environmental changes in these arid systems are likely altering small mammal communities, and therefore, their ecological role. We examined two aspects of the community composition of small mammals in the Great Basin: changes in community composition since large scale sampling of the region began in 1930, and the current population of a sensitive species of small mammal, the dark kangaroo mouse (Microdipodops megacephalus). In Chapter 1, we compared diversity and composition of present day small mammal communities to communities sampled between the years of 1930 and 1980. We sampled 234 historical locations across the eastern Great Basin region during the summers of 2014 and 2015. Our results indicated that diversity, richness, and evenness of small mammals in the Great Basin have declined significantly over the last century (P=0.002, P=0.03, P=0.002). The relative abundance of generalist species has increased, while specialist species have declined (P<0.001, P<0.001). Also, community composition at each site has changed significantly over the past century. Alterations in the community structure of small mammals may have cascading implications for the future of the Great Basin ecoregion. In Chapter 2, we conducted a region-wide survey for the dark kangaroo mouse in western Utah. Four teams sampled 232 locations across western Utah during the summers of 2014-2015. Of the 232 sites sampled, only 5 sites resulted in dark kangaroo mouse captures, totaling 15 individuals. These results could indicate a state-wide population decline for this species, both compared to historic population levels and to the populations surveyed less than ten years ago. The rapid decline may be a result of habitat degradation associated with invasive plant species and increasing fire frequency, the effects of which are exacerbated by the dark kangaroo mouse's life history as an ecological specialist. Unless large-scale habitat restoration and preservation is conducted for remaining populations, it is likely the dark kangaroo mouse will continue to decline within the state.
104

Marine mammal behavior response to sonars, a review

Linderhed, Anna January 2013 (has links)
During the last decades the problems caused by anthropogenic sound and noise in oceans have been recognized in public, by governments, and military. With the use of active sonar, different choices can be made to minimize the risk of damaging or disturbing marine mammals. For this purpose knowledge of sonar disturbance is crucial. There are methods for time or area planning, i.e. when and where to use active sonars, to avoid marine mammals. The purpose of this work is to find information in literature on marine mammal behaviour reactions to the sound of sonar pings, and to evaluate which of two different behavioural models used in risk assessment programs, the “varying response” model and the “avoidance” model, is more correct to use. Main focus is on sonars and marine mammals residing in Sweden, i.e. the harbour porpoise, grey seal, harbour seal and ringed seal. Behavioral results from other research areas such as bycatch, environmental, and strandings, together with other sound sources than sonars and other species, provide a broader picture of the situation in noisy oceans. For the harbor porpoise the “avoidance” model works well. It is a very shy species, which flees fast and far when it comes in contact with new things. With the seals however the “avoidance” model is probably less good, since their responses to sonar differ rather much. Hence, for these taxa we recommend to use the “various” model that takes into account such varying responses.
105

Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers

Kim, Sunghee January 2012 (has links)
The sense of smell in marine mammals is traditionally thought to be poor. However, increasing evidence suggests that pinnipeds may use their sense of smell in a variety of behavioral contexts including communication, foraging, food selection, and reproduction. Using a food-rewarded two-choice instrumental conditioning paradigm, I assessed the ability of South African fur seals, Arctocephalus pusillus, to discriminate between 12 enantiomeric odor pairs, that is, between odorants that are identical in structure except for chirality. The fur seals significantly discriminated between eight out of the twelve odor pairs (according to p &lt; 0.05, with carvone, dihydrocarvone, dihydrocarveol, limonene oxide, menthol, beta-citronellol, fenchone, and alpha-pinene), and failed with only four odor pairs (isopulegol, rose oxide, limonene, and camphor). No significant differences in performance were found between the animals (p &gt; 0.05). Cross-species comparisons between the olfactory performance of the fur seals and that of other species previously tested on the same set of odor pairs lend further support to the notion that the relative size of the olfactory bulbs is not a reliable predictor of olfactory discrimination abilities. The results of the present study suggest that sense of smell may play an important and hitherto underestimated role in regulating the behavior of fur seals.
106

The cost of locomotion in North Atlantic right whales (<italic>Eubalaena glacialis</italic>)

Nousek McGregor, Anna Elizabeth January 2010 (has links)
<p>Locomotion in any environment requires the use of energy to overcome the physical</p><p>forces inherent in the environment. Most large marine vertebrates have evolved</p><p>streamlined fusiform body shapes to minimize the resistive force of drag when in</p><p>a neutral position, but nearly all behaviors result in some increase in that force.</p><p>Too much energy devoted to locomotion may reduce the available surplus necessary</p><p>for population-level factors such as reproduction. The population of North Atlantic</p><p>right whales has not recovered following legal protection due to decreased fecundity,</p><p>including an increase in the intercalf interval, an increase in the years to first calf and</p><p>an increase in the number of nulliparous females in the population. This reproductive</p><p>impairment appears to be related to deficiencies in storing enough energy to meet the</p><p>costs of reproduction. The goal of this study was to determine whether increases in</p><p>moving between prey patches at the cost of decreased foraging opportunities could</p><p>shift these whales into a situation of negative energy gain. The first step is to</p><p>understand the locomotor costs for this species for the key behaviors of traveling and</p><p>foraging.</p><p>This study investigated the cost of locomotion in right whales by recording the</p><p>submerged diving behaviors of free-ranging individuals in both their foraging habitat</p><p>in the Bay of Fundy and their calving grounds in the South Atlantic Bight with a</p><p>suction-cupped archival tag. The data from the tags were used to quantify the oc-</p><p>currence of different behaviors and their associated swimming behaviors and explore</p><p>three behavioral strategies that reduce locomotor costs. First, the influence that</p><p>changes in blubber thickness has on the buoyancy of these whales was investigated</p><p>by comparing the descent and ascent glide durations of individual whales with differ-</p><p>ent blubber thicknesses. Next, the depth of surface dives made by animals of different</p><p>sizes was related to the depth where additional wave drag is generated. Finally, the</p><p>use of intermittent locomotion during foraging was investigated to understand how</p><p>much energy is saved by using this gait. The final piece in this study was to deter-</p><p>mine the drag related to traveling and foraging behaviors from glides recorded by</p><p>the tags and from two different numerical simulations of flow around whales. One, a</p><p>custom developed algorithm for multiphase flow, was used to determine the relative</p><p>drag, while a second commercial package was used to determine the absolute mag-</p><p>nitude of the drag force on the simplest model, the traveling animal. The resulting</p><p>drag estimates were then used in a series of theoretical models that estimated the</p><p>energetic profit remaining after shifts in the occurrence of traveling and searching</p><p>behaviors.</p><p>The diving behavior of right whales can be classified into three stereotyped be-</p><p>haviors that are characterized by differences in the time spent in different parts of the</p><p>water column. The time budgets and swimming movements during these behaviors</p><p>matched those in other species, enabling the dive shapes to be classified as foraging,</p><p>searching and traveling behaviors. Right whales with thicker blubber layers were</p><p>found to perform longer ascent glides and shorter descent glides than those with</p><p>thinner blubber layers, consistent with the hypothesis that positive buoyancy does</p><p>influence their vertical diving behavior. During horizontal traveling, whales made</p><p>shallow dives to depths that were slightly deeper than those that would cause ad-</p><p>ditional costs due to wave drag. These dives appear to allow whales to both avoid</p><p>the costs of diving as well as the costs of swimming near the surface. Next, whales</p><p>were found to glide for 12% of the bottom phases of their foraging dives, and the</p><p>use of `stroke-glide' swimming did not prolong foraging duration from that used by</p><p>continuous swimmers. Drag coefficients estimated from these glides had an average</p><p>of 0.014 during foraging dives and 0.0052 during traveling, values which fall in the</p><p>range of those reported for other marine mammals. One numerical simulation deter-</p><p>mined drag forces to be comparable, while the other drastically underestimated the</p><p>drag of all behaviors. Finally, alterations to the behavioral budgets of these animals</p><p>demonstrated their cost of locomotion constitutes a small portion (8-12%) of the</p><p>total energy consumed and only extreme increases in traveling time could result in a</p><p>negative energy balance. In summary, these results show that locomotor costs are no</p><p>more expensive in this species than those of other cetaceans and that when removed</p><p>from all the other stressors on this population, these whales are not on an energetic</p><p>`knife edge'.</p> / Dissertation
107

Effect of Intensive Agriculture on Small Mammal Communities in and Adjacent to Conservation Areas in Swaziland

Hurst, Zachary Matthew 2010 December 1900 (has links)
I examined the effect of sugarcane plantations on small mammal communities at 3 sites in the Lowveld of Swaziland during the dry and wet seasons of 2008. I evaluated changes in species abundance and community parameters in relation to distance to the interface, as well as the relationship between small mammal communities and environmental variables. I used pitfall arrays and Sherman live traps to sample small mammals along 9 traplines at the land-use interface and on a gradient extending 375 m into each land-use. I used point-centered-quarter, range pole, and line-transect sampling to characterize plant community structure. Two generalist small mammal species had increased abundance as distance into the sugarcane increased. Two species with wide geographic ranges appeared to select areas within 75 m of the interface. Four species with restricted habitat tolerances or diets were negatively affected by sugarcane, as was 1 species that selects for low ground cover. Two species may have avoided the interface. For the majority of species in the Lowveld, sugarcane does not provide habitat. Sugarcane monocultures > 375 m in width may form a barrier to movement of small mammal species. Species richness and diversity significantly decreased at the interface of 2 sites, however, 1 site had increased diversity associated with the interface. My analysis indicated a difference in community composition between the 2 land-uses and differences between the farthest interior conservation area (375 m)-interface (0 m) and the farthest interior sugarcane (375 m). There was no difference in community composition between seasons or distances within the conservation area. The farthest interior sugarcane trapline had distinctness from other traplines within the sugarcane, and may be of importance for minimizing the effects of habitat fragmentation in lowveld savanna. The effects of sugarcane did not extend into adjoining natural vegetation. My results indicated grass biomass, litter depth and shrub density played important roles in structuring the communities. Between sites, variation in community structure attributable to the sugarcane interface varied. The site with poorest vegetative cover had the highest relative importance of distance to the interface. One species (Steatomys pratensis) was negatively affected by distance to the interface.
108

Fire, resource limitation and small mammal populations in coastal eucalypt forest

Sutherland, Elizabeth F. January 1998 (has links)
Thesis (Ph. D.)--School of Biological Sciences, Faculty of Science, University of Sydney, 1999. / Bibliography: leaves 235-260. Also available in print form.
109

Cranial osteology of the long-beaked echidna, and the definition, diagnosis, and origin of Monotremata and its major subclades

Simon, Rachel Veronica 18 February 2014 (has links)
Extant monotremes have a combination of plesiomorphic and apomorphic characters that causes ambiguity about their basic anatomy and evolutionary history. The problem is compounded by the lack of extinct and extant specimens of monotremes available for study. Only five species of monotremes are currently recognized, and all are endangered. The most speciose subclade, the long-beaked echidna, Zaglossus, has few specimens archived in mammalogy collections relative to the platypus, Ornithorhynchus anatinus, and the short-beaked echidna, Tachyglossus aculeatus. As a result, researchers sample from Ornithorhynchus and Tachyglossus, excluding species of Zaglossus from analysis. An equally depauperate fossil record consisting primarily of fragmentary jaws and isolated molars over a broad temporal range (~125 Ma) has led to controversies surrounding the origin and evolution of Monotremata and its major subclades. As new fossils attributable to Monotremata have been discovered, they are placed in conflicting positions on either the crown or the stem. I used CT scans of skeletally immature and mature specimens of Zaglossus bruijni and Zaglossus bartoni, respectively, to describe the cranial osteology of Zaglossus in detail. New insights about the anatomy of Zaglossus were then utilized in a phylogenetic analysis. Zaglossus and the extinct echidna, Megalibgwilia were added to a previously published morphological character matrix, along with 42 new skeletal characters. For the first time, I illustrated the cranial anatomy of Zaglossus bruijnii and Zaglossus bartoni, and described the endocranial morphology and individual variation among the two species. I described patterns of ossification throughout ontogeny that may explain a preservation bias against echidnas. My phylogenetic analysis placed the Early Cretaceous monotremes either on the stem of Ornithorhynchidae or in the monotreme crown, supporting an Early Cretaceous divergence estimate between platypuses and echidnas. I provide the first phylogenetic definition and diagnosis of Monotremata, Ornithorhynchidae, and Tachyglossidae. Based on the distribution of characters of extant monotremes, the ancestral monotreme was likely a terrestrial, scratch-digger capable of electroreception. The ancestral population gave rise to the semi-aquatic platypuses and the large, terrestrial echidnas. Tachyglossus is the most derived of the extant echidnas; it is more appropriate to include Ornithorhynchus and Zaglossus in future phylogenetic analyses. / text
110

The dynamics of collared peccary dispersion into available range

Supplee, Vashti Crowninshield January 1981 (has links)
No description available.

Page generated in 0.0224 seconds