• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forças Intermoleculares: Propriedades Estruturais e Eletrônicas de Clusters de Van Der Waals / Intermolecular forces: structural and electronic properties of van der Waals clusters.

Cunha, Carlos Roberto Martins da 30 October 1997 (has links)
A interação intermolecular nos clusters N2 C5H5, He CsHs e Ne C5H5 é estudada através de métodos ab initio de teoria de perturbação de muitos corpos. Estes sistemas formam uma interessante família onde as diferentes contribuições intermoleculares desempenham papéis complementares para a compreensão das forças intermoleculares envolvidas. De um modo geral, nestes sistemas neutros e apelares as interações de carga e dipolo são inexistentes. Assim, as contribuições eletrostáticas advém de multipolos superiores. Tais clusters devem sua ligação às chamadas forças de van der Waals que tem sua origem nos momentos induzidos. Para o sistema N2 C5H5, único destes que foi observado experimentalmente, sua existência se deve à força de dispersão de London. Entretanto, a interação eletrostática do tipo quadrupolo-quadrupolo pode ser atrativa ou repulsiva dependendo da orientação dos monômeros. Cálculos realizados em teoria de perturbação de segunda ordem, com funções base extensas, indicam que o sistema é ligado com energia de ligação de cerca de 400 cm-1 e que a estrutura mais estável consiste do N2 paralelo ao plano do C5H5 a 3,4 Á, em concordância com os resultados inferidos por estudos experimentais. No caso dos complexos He C5H5 e Ne C5H5 tem-se a ausência da interação quadrupolar. As forças de indução envolvendo momentos multipolares permanentes do CsHs com momentos induzidos do He ou Ne são muito pequenas. As interações são portanto dominadas pelas forças de dispersão de London. No caso He C5H5 nossos resultados obtidos por teoria de perturbação de segunda ordem indicam que o complexo não é ligado ou é ligado por uma energia inferior a 50 cm-1. Já no caso Ne CsHs a interação é suficiente para criar um complexo estável. Nossa melhor estimativa indica uma energia de ligação de cerca de 100 cm-1 Estes resultados podem ser entendidos qualitativamente através da análise das polarizabilidades de dipolo calculadas para estes sistemas. As análises das possíveis geometrias do C5H5 (C2v ou D5h) e das funções base utilizadas são feitas. No caso do C5H5 isolado, cálculos realizados em alto nível de teoria de perturbação mostram que o estado fundamental tem simetria 2 B2 (C2v) decorrente da distorção Jahn¬Teller do estado 2 E(D5h) A diferença de energia é encontrada ser da ordem de 0,2 eV. / The intermolecular interaction betwen N2 C5H5 , He C5H5 and Ne C5H5 is analyzed using second-order many-body perturbation theory. For these systems the interaction is dominated by the van der Waals contribution of the London dispersion force. For N2 C5H5 it is found that the system is stable by rv400 cm-1 at an intermolecular distance of 3,4 A. Analysis of the electrostatic quadrupole-quadrupole interaction shows that the system is stabilized when N2 lies parallel to the C5H5 plane and is destabilized when N2 lies perpendicular to the C5H5 plane. Therefore, although the dispersion force is the major contributor to the stabilization it is the quadrupole-quadrupole interaction that is held responsible for the favourable structure. In the case of both He C5H5 and Ne C5H5 there is no direct electrostatic interaction as the permanent moments of He and Ne are zero. For the He C5 H5 it is found a very small binding energy, if any. As for the Ne C5H5 we find a binding energy of around 100 cm-1. This different behavior for He and Ne is analyzed using the calculated values for the dipole polarizabilities. The influence of the different geometries for C5H5 (C 2v or D5h) as well as the so-called basis set superposition error are analyzed. For isolated C5H5 high-order calculations show that the 2B2 ground state for symmetry C2v lies around 0,2 eV below the 2E ground state for symmetry D5h. This energy lowering comes from the expected Jahn-Teller distortion.
2

Extensão da Aproximação de Campo Médio para a Evolução de Sistemas Férmion-Bóson / Extension of the mean field approximation for the evolution of fermion-boson systems.

Takano Natti, Érica Regina 20 March 1998 (has links)
Neste trabalho estudamos a extensão da aproximação de campo médio, dada uma condição inicial, para a evolução temporal de um sistema composto de férmions e bósons que interagem. Para isto usamos uma técnica de projeção dependente do tempo através do qual obtemos equações de movimento do tipo cinético para o conjunto de variáveis dinâmicas de um corpo. Na primeira parte do trabalho aplicamos a técnica para um sistema descrito pelo modelo de Jaynes Cummings, o qual descreve a interação da matéria, representada por um sistema de dois níveis, com a radiação, representada por um modo normal do campo quantizado. Obtemos a dinâmica de campo médio e a seguir usando a técnica de projeçào, calculamos correções à esta descrição de campo médio. Além de ser um modelo exatamente solúvel, o que nos permite comparar nossos resultados com a solução exata, o modelo de Jaynes-Cummings corresponde ao plasma escalar relativístico em zero dimensões espaciais. Na segunda parte deste trabalho estudamos o modelo do plasma escalar relativístico. Esta teoria quântica de campos descreve a interação de campos bosônicos escalares e fermiônicos de spin-1/2 através de uma interação do tipo Yukawa. Para o sistema do plasma escalar relativístico obtemos as equações que descrevem a dinâmica de campo médio e a partir das soluções estacionárias, renormalizamos a teoria. Finalmente, estudamos o regime de pequenas oscilações em torno do equilíbrio, obtendo soluções analíticas para a evolução de nossas variáveis. Analisamos também as condições para existência de estados ligados neste regime. / In this work we study the extension of the mean-field approximation, given an initial condition, to the time evolution of a fermion-boson system. We use a time-dependent projection where we obtain kinetic-type equations for the set of one-body variables. First, we study the Jaynes-Cummings model which describes the interaction of the matter represented by the two-level system with the radiation represented by the normal mode of the quantized radiation field. We obtain the mean-field dynamics of the system and using the projection technique, we evaluate corrections to this mean-field description. Relevance of the Jaynes-Cummings model stems from the fact that, besides being soluble which possibilities compare our results with the exact solution, it can be seen as corresponding to the relativistic scalar plasma in zero spatial dimensions. Next, we study the relativistic scalar plasma. This quantum field theory describes a system of spin-1/2 fermions interacting through the exchange of scalar particles via a Yukawa-type interaction. In the study of the relativistic scalar plasma, we obtain the mean-field dynamics and from the static solution, we renormalize the theory. Finally, we study the small oscillations regime obtaining analytical solution for one-body variables. We have also examined the condition for the existence of bound-state in this case.
3

Forças Intermoleculares: Propriedades Estruturais e Eletrônicas de Clusters de Van Der Waals / Intermolecular forces: structural and electronic properties of van der Waals clusters.

Carlos Roberto Martins da Cunha 30 October 1997 (has links)
A interação intermolecular nos clusters N2 C5H5, He CsHs e Ne C5H5 é estudada através de métodos ab initio de teoria de perturbação de muitos corpos. Estes sistemas formam uma interessante família onde as diferentes contribuições intermoleculares desempenham papéis complementares para a compreensão das forças intermoleculares envolvidas. De um modo geral, nestes sistemas neutros e apelares as interações de carga e dipolo são inexistentes. Assim, as contribuições eletrostáticas advém de multipolos superiores. Tais clusters devem sua ligação às chamadas forças de van der Waals que tem sua origem nos momentos induzidos. Para o sistema N2 C5H5, único destes que foi observado experimentalmente, sua existência se deve à força de dispersão de London. Entretanto, a interação eletrostática do tipo quadrupolo-quadrupolo pode ser atrativa ou repulsiva dependendo da orientação dos monômeros. Cálculos realizados em teoria de perturbação de segunda ordem, com funções base extensas, indicam que o sistema é ligado com energia de ligação de cerca de 400 cm-1 e que a estrutura mais estável consiste do N2 paralelo ao plano do C5H5 a 3,4 Á, em concordância com os resultados inferidos por estudos experimentais. No caso dos complexos He C5H5 e Ne C5H5 tem-se a ausência da interação quadrupolar. As forças de indução envolvendo momentos multipolares permanentes do CsHs com momentos induzidos do He ou Ne são muito pequenas. As interações são portanto dominadas pelas forças de dispersão de London. No caso He C5H5 nossos resultados obtidos por teoria de perturbação de segunda ordem indicam que o complexo não é ligado ou é ligado por uma energia inferior a 50 cm-1. Já no caso Ne CsHs a interação é suficiente para criar um complexo estável. Nossa melhor estimativa indica uma energia de ligação de cerca de 100 cm-1 Estes resultados podem ser entendidos qualitativamente através da análise das polarizabilidades de dipolo calculadas para estes sistemas. As análises das possíveis geometrias do C5H5 (C2v ou D5h) e das funções base utilizadas são feitas. No caso do C5H5 isolado, cálculos realizados em alto nível de teoria de perturbação mostram que o estado fundamental tem simetria 2 B2 (C2v) decorrente da distorção Jahn¬Teller do estado 2 E(D5h) A diferença de energia é encontrada ser da ordem de 0,2 eV. / The intermolecular interaction betwen N2 C5H5 , He C5H5 and Ne C5H5 is analyzed using second-order many-body perturbation theory. For these systems the interaction is dominated by the van der Waals contribution of the London dispersion force. For N2 C5H5 it is found that the system is stable by rv400 cm-1 at an intermolecular distance of 3,4 A. Analysis of the electrostatic quadrupole-quadrupole interaction shows that the system is stabilized when N2 lies parallel to the C5H5 plane and is destabilized when N2 lies perpendicular to the C5H5 plane. Therefore, although the dispersion force is the major contributor to the stabilization it is the quadrupole-quadrupole interaction that is held responsible for the favourable structure. In the case of both He C5H5 and Ne C5H5 there is no direct electrostatic interaction as the permanent moments of He and Ne are zero. For the He C5 H5 it is found a very small binding energy, if any. As for the Ne C5H5 we find a binding energy of around 100 cm-1. This different behavior for He and Ne is analyzed using the calculated values for the dipole polarizabilities. The influence of the different geometries for C5H5 (C 2v or D5h) as well as the so-called basis set superposition error are analyzed. For isolated C5H5 high-order calculations show that the 2B2 ground state for symmetry C2v lies around 0,2 eV below the 2E ground state for symmetry D5h. This energy lowering comes from the expected Jahn-Teller distortion.
4

Extensão da Aproximação de Campo Médio para a Evolução de Sistemas Férmion-Bóson / Extension of the mean field approximation for the evolution of fermion-boson systems.

Érica Regina Takano Natti 20 March 1998 (has links)
Neste trabalho estudamos a extensão da aproximação de campo médio, dada uma condição inicial, para a evolução temporal de um sistema composto de férmions e bósons que interagem. Para isto usamos uma técnica de projeção dependente do tempo através do qual obtemos equações de movimento do tipo cinético para o conjunto de variáveis dinâmicas de um corpo. Na primeira parte do trabalho aplicamos a técnica para um sistema descrito pelo modelo de Jaynes Cummings, o qual descreve a interação da matéria, representada por um sistema de dois níveis, com a radiação, representada por um modo normal do campo quantizado. Obtemos a dinâmica de campo médio e a seguir usando a técnica de projeçào, calculamos correções à esta descrição de campo médio. Além de ser um modelo exatamente solúvel, o que nos permite comparar nossos resultados com a solução exata, o modelo de Jaynes-Cummings corresponde ao plasma escalar relativístico em zero dimensões espaciais. Na segunda parte deste trabalho estudamos o modelo do plasma escalar relativístico. Esta teoria quântica de campos descreve a interação de campos bosônicos escalares e fermiônicos de spin-1/2 através de uma interação do tipo Yukawa. Para o sistema do plasma escalar relativístico obtemos as equações que descrevem a dinâmica de campo médio e a partir das soluções estacionárias, renormalizamos a teoria. Finalmente, estudamos o regime de pequenas oscilações em torno do equilíbrio, obtendo soluções analíticas para a evolução de nossas variáveis. Analisamos também as condições para existência de estados ligados neste regime. / In this work we study the extension of the mean-field approximation, given an initial condition, to the time evolution of a fermion-boson system. We use a time-dependent projection where we obtain kinetic-type equations for the set of one-body variables. First, we study the Jaynes-Cummings model which describes the interaction of the matter represented by the two-level system with the radiation represented by the normal mode of the quantized radiation field. We obtain the mean-field dynamics of the system and using the projection technique, we evaluate corrections to this mean-field description. Relevance of the Jaynes-Cummings model stems from the fact that, besides being soluble which possibilities compare our results with the exact solution, it can be seen as corresponding to the relativistic scalar plasma in zero spatial dimensions. Next, we study the relativistic scalar plasma. This quantum field theory describes a system of spin-1/2 fermions interacting through the exchange of scalar particles via a Yukawa-type interaction. In the study of the relativistic scalar plasma, we obtain the mean-field dynamics and from the static solution, we renormalize the theory. Finally, we study the small oscillations regime obtaining analytical solution for one-body variables. We have also examined the condition for the existence of bound-state in this case.
5

Estudo da influência de modos vibracionais localizados nas propriedades de transporte de cargas em sistemas de escala nanométrica / Study of the Influence of Localized Vibrational Modes in Charge Transport Properties at Nanoscale Systems

Mendonça, Pedro Brandimarte 03 October 2014 (has links)
Com o rápido avanço das técnicas experimentais observado nas últimas décadas, a fabricação de sistemas nanoestruturados se tornou uma realidade. Nessa escala de grandeza, as interações entre elétrons e vibrações nucleares têm um papel importante no transporte eletrônico, podendo causar a perda de coerência de fase dos elétrons, a abertura de novos canais de condução e a supressão de canais puramente elásticos. Neste trabalho, o problema do transporte eletrônico em escala nanométrica foi tratado considerando as interações elétron-fônon, o que resultou na implementação de ferramentas computacionais para simulação realística de materiais. O transporte eletrônico foi abordado por meio do formalismo das Funções de Green Fora do Equilíbrio, onde as interações elétron-fônon foram tratadas por diferentes modelos. Para considerar o efeito dessas interações no transporte, é necessário, em princípio, incluir um termo de autoenergia de espalhamento na Hamiltoniana do sistema. Contudo, a forma exata dessa autoenergia é desconhecida e aproximações são necessárias. O primeiro efeito da interação elétron-fônon estudado foi a perda de coerência de fase, o que foi abordado pelo modelo fenomenológico das sondas de Büttiker [1]. Foram realizadas duas implementações diferentes deste modelo, a primeira na forma usual, onde se considera uma aproximação elástica para o cálculo da corrente, e a segunda por meio de uma nova proposta sem a aproximação elástica. Entretanto, como a autoenergia de interação utilizada não contém informação a respeito da estrutura dos fônons, o modelo produz somente um alargamento do canal de condutância, simulando apenas o efeito de perda de coerência de fase dos elétrons devido à interação com fônons do material. Para poder incluir as informações sobre a estrutura dos fônons, foi desenvolvido o programa PhOnonS ITeratIVE VIBRATIONS, para o cálculo das frequências e dos modos vibracionais de materiais e para calcular a matriz de acoplamento elétron-fônon, a partir de métodos de primeiros princípios. No cálculo da matriz de acoplamento elétron-fônon, além da implementação do código algumas intervenções foram realizadas no programa SIESTA [2,3] (uma implementação da Teoria do Funcional da Densidade). Outra abordagem para a interação elétron-fônon consiste em expandir a autoenergia de interação perturbativamente em diagramas de Feynman até a primeira ordem, o que é convencionalmente chamado de primeira aproximação de Born. Essa aproximação, assim como a sua versão autoconsistente, no qual uma classe mais ampla de diagramas é considerada, foram incorporadas ao programa SMEAGOL [4], um código de transporte eletrônico ab initio baseado na combinação DFT-NEGF e que utiliza como plataforma do cálculo da estrutura eletrônica o código SIESTA. Essas implementações, em conjunto com diversas mudanças realizadas no código SMEAGOL, deram origem ao programa Inelastic SMEAGOL para cálculos de transporte inelástico ab initio. Nessa busca por uma descrição mais realista dos dispositivos eletrônicos, outro aspecto que deve ser considerado é o fato de que os dispositivos muitas vezes podem alcançar escalas de comprimento da ordem de 100 nm com um grande número de defeitos aleatoriamente distribuídos, o que pode levar a um novo regime fundamental de transporte, a saber, o de localização de Anderson [5]. Neste trabalho, foi desenvolvido o programa Inelastic DISORDER, que permite calcular, por primeiros princípios, as propriedades de transporte elástico e inelástico de sistemas com dezenas de milhares de átomos com um grande número de defeitos posicionados aleatoriamente. O método combina cálculos de estrutura eletrônica via DFT com o formalismo NEGF para o transporte, onde as interações elétron-fônon são incluídas por meio de teoria de perturbação com relação à matriz de acoplamento elétron-fônon (Lowest Order Expansion). O método desenvolvido foi aplicado ao estudo de nanofitas de grafeno com impurezas hidroxílicas. Observou-se que, ao incluir a interação elétron-fônon, as propriedades de transporte sofrem mudanças significativas, indicando que estas interações podem influenciar nos efeitos de localização por desordem. [1] M. Büttiker. Phys. Rev. B 33(5), 30203026 (1986). [2] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García e J. M. Soler. Phys. Stat. Sol. (b) 215, 809817 (1999). [3] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón e D. Sánchez- Portal. J. Phys. Cond. Mat. 14, 27452779 (2002). [4] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer e S. Sanvito. Phys. Rev. B 73, 085414 (2006). [5] P. W. Anderson. Phys. Rev. 109, 1492 (1958). / With the fast improvement of experimental techniques over the past decades, the synthesis of nanoscale systems has become a reality. At this length scales, the interaction between electrons and ionic vibrations plays an important role in electronic transport, and may cause the loss of the electron\'s phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. In this work the electronic transport problem at nanoscale was addressed considering the electron-phonon interactions, resulting on the development of computational tools for realistic simulations of materials. The electronic transport was approached with the Non-Equilibrium Green\'s Function formalism, where electron-phonon interactions were addressed by different models. To take into account the interaction\'s effects, one needs in principle to include a self-energy scattering term in the system Hamiltonian. Nevertheless, the exact form of this self-energy is unknown and approximations are required. The first effect from electron-phonon interactions dealt was the loss of phase coherence, which was approached by the Büttiker\'s probes phenomenological model [1]. Two different implementations of this model were performed, the first in the standard form, where an elastic approximation is considered in order to compute the current, and the second by a new method without the elastic approximation. However, since the interaction self-energy used doesn\'t contains any information about the phonon\'s structure, this model only produces a broadening at the conducting channels, simulating just the effect of loss of phase coherence from the electrons due to their interactions with the phonons. In order to be able to include information about the phonon\'s structure, the computational code PhOnonS ITeratIVE VIBRATIONS was developed, for calculating the frequencies and vibrational modes of the materials and to compute the electron-phonon coupling matrix, from first principles methods. In the calculation of the electron-phonon coupling matrix, besides the code implementation some changes were performed at the SIESTA program [2,3] (a Density Functional Theory implementation). Another approach for the electron-phonon interactions consists of expanding the interaction self-energy perturbatively in Feynman diagrams until the first order, what is conventionally called the first Born approximation. This approximation, together with its self-consistent version, where a wider class of diagrams are regarded, have been incorporated into the SMEAGOL program [4], an ab initio electronic transport code based on the combination DFT-NEGF which uses the SIESTA code as a platform for electronic structure calculations. The implementations, together with many changes performed on SMEAGOL code, gave rise to the Inelastic SMEAGOL program for inelastic ab initio transport calculations. In this search for a more realistic description of electronic devices, another feature that should be taken into account is the fact that these devices most often can reach the 100 nm length scale with a large number of randomly distributed defects, which can lead to a fundamentally new transport regime, namely the Anderson localization regime [5]. In this work, the program Inelastic DISORDER was developed, which allows one to compute, by first principles, the elastic and inelastic transport properties from systems with tens of thousands of atoms with a large number of randomly positioned defects. The method combines electronic structure calculations via DFT with the NEGF formalism for transport, where the electron-phonon interactions are included with perturbation theory on the electron-phonon coupling matrix (Lowest Order Expansion). The developed method was applied to the study of graphene nanoribbons with joint attachment of hydroxyl impurities. It was observed that, by including the electron-phonon interaction, the transport properties experience significant changes, indicating that these interactions can influence the effects of localization by disorder. [1] M. Büttiker. Phys. Rev. B 33(5), 30203026 (1986). [2] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler. Phys. Stat. Sol. (b) 215, 809817 (1999). [3] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez- Portal. J. Phys. Cond. Mat. 14, 27452779 (2002). [4] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito. Phys. Rev. B 73, 085414 (2006). [5] P. W. Anderson. Phys. Rev. 109, 1492 (1958).
6

Spectral functions of low-dimensional quantum systems

Dargel, Piet 30 November 2012 (has links)
No description available.
7

Estudo da influência de modos vibracionais localizados nas propriedades de transporte de cargas em sistemas de escala nanométrica / Study of the Influence of Localized Vibrational Modes in Charge Transport Properties at Nanoscale Systems

Pedro Brandimarte Mendonça 03 October 2014 (has links)
Com o rápido avanço das técnicas experimentais observado nas últimas décadas, a fabricação de sistemas nanoestruturados se tornou uma realidade. Nessa escala de grandeza, as interações entre elétrons e vibrações nucleares têm um papel importante no transporte eletrônico, podendo causar a perda de coerência de fase dos elétrons, a abertura de novos canais de condução e a supressão de canais puramente elásticos. Neste trabalho, o problema do transporte eletrônico em escala nanométrica foi tratado considerando as interações elétron-fônon, o que resultou na implementação de ferramentas computacionais para simulação realística de materiais. O transporte eletrônico foi abordado por meio do formalismo das Funções de Green Fora do Equilíbrio, onde as interações elétron-fônon foram tratadas por diferentes modelos. Para considerar o efeito dessas interações no transporte, é necessário, em princípio, incluir um termo de autoenergia de espalhamento na Hamiltoniana do sistema. Contudo, a forma exata dessa autoenergia é desconhecida e aproximações são necessárias. O primeiro efeito da interação elétron-fônon estudado foi a perda de coerência de fase, o que foi abordado pelo modelo fenomenológico das sondas de Büttiker [1]. Foram realizadas duas implementações diferentes deste modelo, a primeira na forma usual, onde se considera uma aproximação elástica para o cálculo da corrente, e a segunda por meio de uma nova proposta sem a aproximação elástica. Entretanto, como a autoenergia de interação utilizada não contém informação a respeito da estrutura dos fônons, o modelo produz somente um alargamento do canal de condutância, simulando apenas o efeito de perda de coerência de fase dos elétrons devido à interação com fônons do material. Para poder incluir as informações sobre a estrutura dos fônons, foi desenvolvido o programa PhOnonS ITeratIVE VIBRATIONS, para o cálculo das frequências e dos modos vibracionais de materiais e para calcular a matriz de acoplamento elétron-fônon, a partir de métodos de primeiros princípios. No cálculo da matriz de acoplamento elétron-fônon, além da implementação do código algumas intervenções foram realizadas no programa SIESTA [2,3] (uma implementação da Teoria do Funcional da Densidade). Outra abordagem para a interação elétron-fônon consiste em expandir a autoenergia de interação perturbativamente em diagramas de Feynman até a primeira ordem, o que é convencionalmente chamado de primeira aproximação de Born. Essa aproximação, assim como a sua versão autoconsistente, no qual uma classe mais ampla de diagramas é considerada, foram incorporadas ao programa SMEAGOL [4], um código de transporte eletrônico ab initio baseado na combinação DFT-NEGF e que utiliza como plataforma do cálculo da estrutura eletrônica o código SIESTA. Essas implementações, em conjunto com diversas mudanças realizadas no código SMEAGOL, deram origem ao programa Inelastic SMEAGOL para cálculos de transporte inelástico ab initio. Nessa busca por uma descrição mais realista dos dispositivos eletrônicos, outro aspecto que deve ser considerado é o fato de que os dispositivos muitas vezes podem alcançar escalas de comprimento da ordem de 100 nm com um grande número de defeitos aleatoriamente distribuídos, o que pode levar a um novo regime fundamental de transporte, a saber, o de localização de Anderson [5]. Neste trabalho, foi desenvolvido o programa Inelastic DISORDER, que permite calcular, por primeiros princípios, as propriedades de transporte elástico e inelástico de sistemas com dezenas de milhares de átomos com um grande número de defeitos posicionados aleatoriamente. O método combina cálculos de estrutura eletrônica via DFT com o formalismo NEGF para o transporte, onde as interações elétron-fônon são incluídas por meio de teoria de perturbação com relação à matriz de acoplamento elétron-fônon (Lowest Order Expansion). O método desenvolvido foi aplicado ao estudo de nanofitas de grafeno com impurezas hidroxílicas. Observou-se que, ao incluir a interação elétron-fônon, as propriedades de transporte sofrem mudanças significativas, indicando que estas interações podem influenciar nos efeitos de localização por desordem. [1] M. Büttiker. Phys. Rev. B 33(5), 30203026 (1986). [2] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García e J. M. Soler. Phys. Stat. Sol. (b) 215, 809817 (1999). [3] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón e D. Sánchez- Portal. J. Phys. Cond. Mat. 14, 27452779 (2002). [4] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer e S. Sanvito. Phys. Rev. B 73, 085414 (2006). [5] P. W. Anderson. Phys. Rev. 109, 1492 (1958). / With the fast improvement of experimental techniques over the past decades, the synthesis of nanoscale systems has become a reality. At this length scales, the interaction between electrons and ionic vibrations plays an important role in electronic transport, and may cause the loss of the electron\'s phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. In this work the electronic transport problem at nanoscale was addressed considering the electron-phonon interactions, resulting on the development of computational tools for realistic simulations of materials. The electronic transport was approached with the Non-Equilibrium Green\'s Function formalism, where electron-phonon interactions were addressed by different models. To take into account the interaction\'s effects, one needs in principle to include a self-energy scattering term in the system Hamiltonian. Nevertheless, the exact form of this self-energy is unknown and approximations are required. The first effect from electron-phonon interactions dealt was the loss of phase coherence, which was approached by the Büttiker\'s probes phenomenological model [1]. Two different implementations of this model were performed, the first in the standard form, where an elastic approximation is considered in order to compute the current, and the second by a new method without the elastic approximation. However, since the interaction self-energy used doesn\'t contains any information about the phonon\'s structure, this model only produces a broadening at the conducting channels, simulating just the effect of loss of phase coherence from the electrons due to their interactions with the phonons. In order to be able to include information about the phonon\'s structure, the computational code PhOnonS ITeratIVE VIBRATIONS was developed, for calculating the frequencies and vibrational modes of the materials and to compute the electron-phonon coupling matrix, from first principles methods. In the calculation of the electron-phonon coupling matrix, besides the code implementation some changes were performed at the SIESTA program [2,3] (a Density Functional Theory implementation). Another approach for the electron-phonon interactions consists of expanding the interaction self-energy perturbatively in Feynman diagrams until the first order, what is conventionally called the first Born approximation. This approximation, together with its self-consistent version, where a wider class of diagrams are regarded, have been incorporated into the SMEAGOL program [4], an ab initio electronic transport code based on the combination DFT-NEGF which uses the SIESTA code as a platform for electronic structure calculations. The implementations, together with many changes performed on SMEAGOL code, gave rise to the Inelastic SMEAGOL program for inelastic ab initio transport calculations. In this search for a more realistic description of electronic devices, another feature that should be taken into account is the fact that these devices most often can reach the 100 nm length scale with a large number of randomly distributed defects, which can lead to a fundamentally new transport regime, namely the Anderson localization regime [5]. In this work, the program Inelastic DISORDER was developed, which allows one to compute, by first principles, the elastic and inelastic transport properties from systems with tens of thousands of atoms with a large number of randomly positioned defects. The method combines electronic structure calculations via DFT with the NEGF formalism for transport, where the electron-phonon interactions are included with perturbation theory on the electron-phonon coupling matrix (Lowest Order Expansion). The developed method was applied to the study of graphene nanoribbons with joint attachment of hydroxyl impurities. It was observed that, by including the electron-phonon interaction, the transport properties experience significant changes, indicating that these interactions can influence the effects of localization by disorder. [1] M. Büttiker. Phys. Rev. B 33(5), 30203026 (1986). [2] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler. Phys. Stat. Sol. (b) 215, 809817 (1999). [3] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez- Portal. J. Phys. Cond. Mat. 14, 27452779 (2002). [4] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito. Phys. Rev. B 73, 085414 (2006). [5] P. W. Anderson. Phys. Rev. 109, 1492 (1958).
8

Exact eigenstates of the Inozemtsev spin chain / Exakta egentillstånd till Inozemtsevs spinnkedja

Lentz, Simon January 2021 (has links)
This thesis deals with the following question: are there more eigenfunctions, other than the already known eigenfunctions, of the spin chain with elliptic interactions known as the Inozemtsev spin chain? The Inozemtsev spin chain interpolates between two quantum integrable spin chains, theHeisenberg spin chain and the Haldane-Shastry spin chain. Therefore it is interesting to explore eigenfunctions of the Inozemtsev spin chain in greater detail. Moreover, there exists connections between spin chains and their corresponding spinless continuum model, namely theCalogero-Sutherland models; a derivation of the connection between the Haldane-Shastry spin chain and the trigonometric interacting Calogero-Sutherland model is presented in this thesis. These connections state that the eigenfunctions of the Calogero-Sutherland model are also eigenfunctionsof the corresponding spin chain. An established connection between the Inozemtsev spin chain and the elliptic interacting Calogero-Sutherland model yields exact eigenfunctions with simple poles at coinciding arguments of the Inozemtsev spin chain. However, there are eigenfunctions of theelliptic Calogero-Sutherland model with second order zeros instead of simple poles at coinciding arguments. It is therefore interesting to see if a connection exists that relates the eigenfunctions of the elliptic Calogero-Sutherland model with second order zeros to eigenfunctionsof the Inozemtsev spin chain also with second order zeros. The main goal of this thesis is to explore eigenfunctions of the Inozemtsev spin chain with second order zeros for two magnons. This thesis uses analytical methods for finding these eigenfunctions and numerical methods have beenresorted to in the end. The numerical results indicate that the functions explored in this thesis fail to parametrise the eigenfunctions of the Inozemtsev spin chain, except for a few special cases. / Den här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
9

Out-of-equilibrium dynamics in a quantum impurity model / Dynamique hors d'équilibre dans un modèle d'impureté quantique

Bidzhiev, Kemal 07 October 2019 (has links)
Le domaine des problèmes quantiques à N-corps à l'équilibre et hors d'équilibre sont des sujets majeurs de la Physique et de la Physique de la matière condensée en particulier. Les propriétés d'équilibre de nombreux systèmes unidimensionnels en interaction sont bien comprises d'un point de vue théorique, des chaînes de spins aux théories quantiques des champs dans le continue. Ces progrès ont été rendus possibles par le développement de nombreuses techniques puissantes, comme, par exemple, l'ansatz de Bethe, le groupe de renormalisation, la bosonisation, les états produits de matrices ou la théorie des champs invariante conforme. Même si les propriétés à l'équilibre de nombreux modèles soient connues, ceci n'est en général pas suffisant pour décrire leurs comportements hors d'équilibre, et ces derniers restent moins explorés et beaucoup moins bien compris. Les modèles d'impuretés quantiques représentent certains des modèles à N-corps les plus simples. Mais malgré leur apparente simplicité ils peuvent capturer plusieurs phénomènes expérimentaux importants, de l'effet Kondo dans les métaux aux propriétés de transports dans les nanostructures, comme les points quantiques. Dans ce travail nous considérons un modèle d'impureté appelé "modèle de niveau résonnant en interaction" (IRLM). Ce modèle décrit des fermions sans spin se propageant dans deux fils semi-infinis qui sont couplés à un niveau résonant -- appelé point ou impureté quantique -- via un terme de saut et une répulsion Coulombienne. Nous nous intéressons aux situations hors d'équilibre où un courant de particules s'écoule à travers le point quantique, et étudions les propriétés de transport telles que le courant stationnaire (en fonction du voltage), la conductance différentielle, le courant réfléchi, le bruit du courant ou encore l'entropie d'intrication. Nous réalisons des simulations numériques de la dynamique du modèle avec la méthode du groupe de renormalisation de la matrice densité dépendent du temps (tDMRG), qui est basée sur une description des fonctions d'onde en terme d'états produits de matrices. Nous obtenons des résultats de grande précision concernant les courbes courant-voltage ou bruit-voltage de l'IRLM, dans un grand domaine de paramètres du modèle (voltage, force de l'interaction, amplitude de saut vers le dot, etc.). Ces résultats numériques sont analysés à la lumière de résultats exacts de théorie des champs hors d'équilibre qui ont été obtenus pour un modèle similaire à l'IRLM, le modèle de Sine-Gordon avec bord (BSG). Cette analyse est en particulier basée sur l'identification d'une échelle d'énergie Kondo et d'exposants décrivant les régimes de petit et grand voltage. Aux deux points particuliers où les modèles sont connus comme étant équivalents, nos résultats sont en accord parfait avec la solution exacte. En dehors de ces deux points particuliers nous trouvons que les courbes de transport de l'IRLM et du modèle BSG demeurent très proches, ce qui était inattendu et qui reste dans une certaine mesure inexpliqué. / The fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained.

Page generated in 0.0863 seconds