• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multinucleon Short-range Correlation Model for Nuclear Spectral Functions

Artiles, Oswaldo 12 May 2017 (has links)
The main goal of the research presented in my dissertation was to develop a theoretical model for relativistic nuclear spectral functions at high missing momenta and removal energies based on the multi-nucleon short-range correlation (SRC) model. The nuclear spectral functions are necessary for the description of high energy nuclear processes currently being studied at different labs such as JLAB, LHC and FNAL. The model followed the effective Feynman diagrammatic approach in order to ac-count for the relativistic effects important in the SRC domain. In addition to the two-nucleon (2N) SRC with center of mass motion contribution, the contribution of the three-nucleon SRCs to the spectral functions was also derived. The latter was modeled based on the assumption that the 3N SRCs are a product of two sequential short range nucleon-nucleon (NN) interactions. The nuclear spectral functions models were derived from two theoretical frameworks for evaluating covariant Feynman diagrams: In the first, referred to as the virtual nucleon approximation, the Feynman diagrams were reduced to the time ordered non-covariant diagrams by evaluating the nucleon spectators in the SRC at their positive energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred to as the light-front approximation, the boost invariant nuclear spectral function was formulated in the light-front reference frame in which case the vacuum diagrams are kinematically suppressed and the bound nucleon is described by its light-front variables such as momentum fraction, transverse momentum and invariant mass. On the basis of the derived nuclear spectral functions, the corresponding computational models were developed from which the numerical estimates of the SRC spectral functions, the SRC momentum distributions, and the SRC density matrices were obtained.
2

Pushing the boundaries of condensed matter electron momentum spectroscopy

Bowles, Cameron Michael Albert, cameronbowles@hotmail.com January 2008 (has links)
An electron momentum spectrometer at the Australian National University has been used to study various aspects of different solid state systems. EMS is a transmission mode technique and involves the collision of the incident electron with a bound electron, after which both electrons are ejected and measured in coincidence. Through well defined reaction kinematics the complete valence spectral momentum density A(ɛ,q) can be measured. The spectrometer has been used to measure the spectral momentum densities (spectral functions) of single crystal targets, as well as targets in disordered states. A new spin polarised electron source was constructed and implemented in the ANU spectrometer, which was used to measure spin dependent features of ferromagnetic samples.¶ This thesis is divided into seven chapters, the first chapter is an introduction into the field of electron momentum spectroscopy, highlighting what has been measured before and how the technique has progressed to its present state. Some comparisons to other experimental techniques will be made.¶ The second chapter describes the ANU EMS spectrometer in detail. The technique requires some technical and advanced equipment that is often used in novel ways. The production of thin (20 nm) free standing targets will be detailed, along with the experimental chamber and electronics used to run the apparatus and collect data. The determination of the energy and momentum resolution of the experiment is also described.¶ The third chapter will detail the design and construction of the new spin polarised electron source. The results of commissioning and characterizing the new source will be presented.¶ Chapters four through six will present the measured results. The fourth chapter will detail the single crystalline measurements for the group eleven noble metals (Cu, Ag and Au). Each sample was measured along three high symmetry directions and compared to a DFT calculation using the LDA and a FP-LMTO basis. The fifth chapter will include the results from samples that were in disordered states, a measurement which is unique to the EMS technique. The polycrystalline and amorphous states of the Si and Ge semiconductors are presented and conclusions are made to the degree of difference in the results and to which theoretical approach to the unique amorphous state of the semiconductors best matches the EMS results. The sixth chapter includes results of ferromagnetic iron, measured using the spin polarised electron source. The spectrometer was used to measure spin-polarised electron-energy-loss-spectroscopy (SPEELS) and magnetic electron-Compton profiles. A theoretical investigation is also presented in chapter six which details the advancements required in the spin polarised electron gun to measure an accurate spin-polarised EMS spectra of a ferromagnetic Fe sample.¶ Chapter 7 includes the summary of all the results presented and conclusions reached from the comparison of the measured EMS spectra and various theoretical calculations. A discussion is presented about the future directions and possibilities of the EMS technique.
3

Topological and non-equilibrium superconductivity in low-dimensional strongly correlated quantum systems

Paeckel, Sebastian 05 February 2020 (has links)
No description available.
4

Analysis of JLab E12-14-012 Ti(e,e′p) Data and Determination of the Ti Spectral Function

Lanham, Clint A. 26 May 2023 (has links)
Future long baseline neutrino oscillation experiments like the Deep Underground Neutrino Experiment (DUNE) rely on Liquid Argon Time Projection Chamber (LArTPC) detectors. The reconstruction of neutrino flavors and energy through interactions with Argon is a critical issue for assuring the DUNE success. The neutrino-Argon nuclear cross section is one of the biggest sources of uncertainty in measuring possible Charge-Parity Violation (CPV) in the neutrino (ν) sector and decoupling background like matter-effects. This thesis summarizes the exclusive electron scattering measurement of the Jefferson Lab E12-14-012 experiment. The E12-14-012 experiment goals are to explore the Ti(e,e′p) and Ar(e,e′p) reactions in a wide range of kinematics in order to determine the spectral function of protons and neutrons in Argon. The measurements made in E12-14-012 are the first of their kind in argon and are a pivotal step in understanding the electron-Argon interaction and its relation to neutrino scattering. Titanium was specifically chosen under an assumption that its protons can be a proxy for argon neutron spectral functions. The analysis of the exclusive electron scattering in titanium is described in detail in this thesis. / M.S. / While considerable progress has been made in understanding the power of the atom, nucleons (protons and neutrons) trapped in medium-to-heavy nuclei have properties that we still need to understand. The purpose of this thesis is to explore the nuclear investigation conducted at Jefferson Lab (JLab) in Newport News, Virginia. Specifically, we follow the data analysis of the JLab Hall A Experiment E12-14-012 which seeks to quantify the nuclear energy momentum distributions of nucleons in complex nuclei like titanium and argon. These measurements, the first of their kind experimentally, are done to provide a reliable model for lepton-nucleus interactions. Modeling lepton-nucleus interactions in argon is of paramount importance, as argon is the primary target medium in future long baseline neutrino oscillation experiments like DUNE. Neutrinos are notoriously difficult to measure; and therefore, when they interact, we only measure the interaction products as they come out of the nucleus. Sometimes the products of the primary interaction will not escape the nucleus and have to be modelled to accurately estimate the incoming neutrino energy. The analysis on titanium provided in this thesis is a bridge for argon interactions with leptons, where titanium is used to determine argon neutron momentum and energy distributions.
5

Investigation of renormalization effects in high temperature cuprate superconductors / Untersuchung von Renormierungseffekten in Hochtemperatur-Kuprat-Supraleitern

Zabolotnyy, Volodymyr B. 09 May 2008 (has links) (PDF)
While in conventional superconductors coupling between electrons and phonons is known to be responsible for the electron pairing, for the high temperature superconductors the pairing media remains under debates. Since the interactions of electrons with other degrees of freedom (phonons, magnetic excitations, etc) manifest themselves by an additional renormalization in the electronic dispersion, they can be investigated by means of Angle Resolved Photoelectron Spectroscopy. In the work renormalization in two families of high Tc cuprates have been studied. Along the diagonal of the two-dimensional BZ, the renormalization effects are represented by an unusual band dispersion that develops a so-called ‘‘kink’’. In the vicinity of the (pi, 0) point of the BZ, where the order parameter reaches its maximum, the renormalization is noticeably stronger and makes itself evident even in the shape of a single spectral line measured for a fixed momentum. It was shown that for the Bi-2212 samples substitution of Cu atoms in Cu-O plane changes renormalization features in ARPES spectra both in nodal and antinodal parts of the Brillouin zone. The smearing of the dip in the in the spectral line shape measured at (pi; 0) point can be well explained by coupling of electrons to the magnetic resonance mode. The effect of Zn and Ni substitution on the antinodal ARPES spectra was shown to be in good agreement with the influence of these impurities on magnetic resonance mode seen in inelastic neutron scattering experiments. This, in addition to the previous ARPES studies of temperature and doping dependence of peak-dip-hump structure, mass renormalization near antinodal region and a kink in the nodal part of Brillouin zone, provides further evidence that the coupling to magnetic excitations, rather than to phonons, is responsible for the observed unusual renormalization. Unlike the well studied Bi-2212 family of cuprates, photoemission on YBCO-123 turns out to be much more complicated. The observed spectra have a strong contribution from a heavily overdoped surface component with the hole doping level of about x~0.30, which is weakly dependent on the sample stochiometry. Absence of any signs of superconductivity in the spectra of the overdoped component was argued to result from the unusually high doping level. This conclusion is supported by the fact that the overdoped bands give rise to the Fermi surface and band structure consistent with the predictions of the LDA calculations, as well as, by the dependence of the photoemission matrix element on the excitation energy, which closely follows that of the superconducting bulk component. Specific experimental geometry was used to enhance the signal coming from the superconducting component. In particular, experiments with circularly polarized light bundled with simple theoretical considerations enabled better separation of the surface and the bulk components. This type of experiments also suggests that the overdoped component is mainly localized in the topmost CuO2 bilayer, while the next bilayers in the YBCO-123 structure already represent bulk properties and retain superconductivity. Using partially Ca substituted samples it was possible to obtain spectra with a suppressed overdoped component. The likely reason for the suppression is a shift of the most probable cleavage plane from the Ba–O interface to the Y layer. Spectra from the Ca substituted sample clearly reveal a sizable superconducting gap, and strong renormalization effects in the vicinity of the antinodal point. The fact that the renormalization vanishes above Tc and has strong momentum dependence, diminishing away from the (pi; 0)/(0; pi) point, strongly suggests that the reason for this renormalization in YBCO-123 is coupling of the electronic subsystem to spin resonance, similar to the case of Bi-2212.
6

Spectral functions of low-dimensional quantum systems

Dargel, Piet 30 November 2012 (has links)
No description available.
7

Investigation of renormalization effects in high temperature cuprate superconductors

Zabolotnyy, Volodymyr B. 16 April 2008 (has links)
While in conventional superconductors coupling between electrons and phonons is known to be responsible for the electron pairing, for the high temperature superconductors the pairing media remains under debates. Since the interactions of electrons with other degrees of freedom (phonons, magnetic excitations, etc) manifest themselves by an additional renormalization in the electronic dispersion, they can be investigated by means of Angle Resolved Photoelectron Spectroscopy. In the work renormalization in two families of high Tc cuprates have been studied. Along the diagonal of the two-dimensional BZ, the renormalization effects are represented by an unusual band dispersion that develops a so-called ‘‘kink’’. In the vicinity of the (pi, 0) point of the BZ, where the order parameter reaches its maximum, the renormalization is noticeably stronger and makes itself evident even in the shape of a single spectral line measured for a fixed momentum. It was shown that for the Bi-2212 samples substitution of Cu atoms in Cu-O plane changes renormalization features in ARPES spectra both in nodal and antinodal parts of the Brillouin zone. The smearing of the dip in the in the spectral line shape measured at (pi; 0) point can be well explained by coupling of electrons to the magnetic resonance mode. The effect of Zn and Ni substitution on the antinodal ARPES spectra was shown to be in good agreement with the influence of these impurities on magnetic resonance mode seen in inelastic neutron scattering experiments. This, in addition to the previous ARPES studies of temperature and doping dependence of peak-dip-hump structure, mass renormalization near antinodal region and a kink in the nodal part of Brillouin zone, provides further evidence that the coupling to magnetic excitations, rather than to phonons, is responsible for the observed unusual renormalization. Unlike the well studied Bi-2212 family of cuprates, photoemission on YBCO-123 turns out to be much more complicated. The observed spectra have a strong contribution from a heavily overdoped surface component with the hole doping level of about x~0.30, which is weakly dependent on the sample stochiometry. Absence of any signs of superconductivity in the spectra of the overdoped component was argued to result from the unusually high doping level. This conclusion is supported by the fact that the overdoped bands give rise to the Fermi surface and band structure consistent with the predictions of the LDA calculations, as well as, by the dependence of the photoemission matrix element on the excitation energy, which closely follows that of the superconducting bulk component. Specific experimental geometry was used to enhance the signal coming from the superconducting component. In particular, experiments with circularly polarized light bundled with simple theoretical considerations enabled better separation of the surface and the bulk components. This type of experiments also suggests that the overdoped component is mainly localized in the topmost CuO2 bilayer, while the next bilayers in the YBCO-123 structure already represent bulk properties and retain superconductivity. Using partially Ca substituted samples it was possible to obtain spectra with a suppressed overdoped component. The likely reason for the suppression is a shift of the most probable cleavage plane from the Ba–O interface to the Y layer. Spectra from the Ca substituted sample clearly reveal a sizable superconducting gap, and strong renormalization effects in the vicinity of the antinodal point. The fact that the renormalization vanishes above Tc and has strong momentum dependence, diminishing away from the (pi; 0)/(0; pi) point, strongly suggests that the reason for this renormalization in YBCO-123 is coupling of the electronic subsystem to spin resonance, similar to the case of Bi-2212.

Page generated in 0.0827 seconds