• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement et application de méthodes corrélées pour la description de systèmes moléculaires / Development and application of correlated methods for the description of molecular systems

Paulino Neto, Romain 29 September 2014 (has links)
Ces travaux de thèse se sont concentrés sur le développement, l'implémentation et l'application de différents types de méthodes quantiques prenant la corrélation électronique en compte, dans le but de fournir des outils performants pour la description de systèmes moléculaires à l'état fondamental et excité. La méthode dite DMRG (Density Matrix Renormalization Group) a été étudiée et un logiciel correspondant a été développé en FORTRAN. Cette méthode permet de limiter le nombre d'états électroniques à prendre en compte, ce qui fait gagner du temps de calcul, tout en assurant une précision des résultats du même ordre que celle fournie par les toutes meilleures méthodes post-Hartree-Fock actuelles. Dans la deuxième partie de cette thèse, nous avons utilisé une autre méthode : la DFT (Density Functional Theory). Une étude théorique a été effectuée sur deux fonctionnelles à séparation de portée (HISS-A et -B) afin d'évaluer dans quelle mesure ces fonctionnelles, développées au départ pour l'étude des systèmes métalliques, pouvaient être appliquées à la description de l'état fondamental et excité de systèmes moléculaires hautement conjugués. Nous avons également utilisé la DFT afin de modéliser et rationaliser le comportement photo-physique d'un composé moléculaire présentant une émission dite " duale ". Nous avons pu ainsi caractériser le comportement complexe de la molécule à l'état excité et expliquer les résultats surprenants qui avaient été observés, en particulier au niveau des spectres d'émission UV et d'excitation de fluorescence. Le phénomène d'émission duale observé a ainsi pu être lié à la présence d'un degré de liberté conformationnel important de la molécule. / In the last few years, a lot of energy has been put forward in the area of quantum chemistry to develop new methods, or to improve existing methods, that are able to describe very precisely the electronic structure of molecular systems. In this manuscript, a precise overview of such a method (namely the Density Matrix Renormalization Group, DMRG method) is given. A software able to carry out DMRG calculations has indeed been developed from scratch in the laboratory during this thesis. This method can be seen as a post-Hartree-Fock method, in which only the electronic states that are relevant for the correct description of the molecule are kept. In this way, the computational cost remains acceptable, and the results are in line with those given by "exact" methods such as full-CI. Density Functional Theory (DFT) has also been investigated in this work. DFT and TD-DFT calculations have indeed also been carried out. The performances of two middle-range-separated functionals, namely HISS-A and HISS-B, to describe electronic transitions in conjugated molecules have been probed in a theory vs. theory study. Those functionals, which had been first developed for the study of metals, show to be adequate for the correct description of electronic excitations of chromophores and of push-pull molecules. Optical properties of a dual emittor have also been studied using TD-DFT. The dual emission of this molecule has been shown to stem from the presence of two distinct emissive states, respectively of Intramolecular Charge Transfer (ICT) and locally excited (LE) nature. TD-DFT has allowed us to link those two emissive states to two different conformations of the molecule.
2

Theoretical study of correlated topological insulators / 相関効果をもつトポロジカル絶縁体の理論的研究

Yoshida, Tsuneya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18062号 / 理博第3940号 / 新制||理||1568(附属図書館) / 30920 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 石田 憲二, 准教授 藤本 聡 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Dynamical quantum effects in cluster dynamics of Fermi systems / フェルミ粒子系の集団的ダイナミクスにおける動的量子効果

Ozaki, Junichi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18774号 / 理博第4032号 / 新制||理||1581(附属図書館) / 31725 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 佐々 真一, 教授 高橋 義朗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
4

Characterization of topological phases in models of interacting fermions

Motruk, Johannes 15 July 2016 (has links) (PDF)
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.
5

Quantum Magnetism, Nonequilibrium Dynamics and Quantum Simulation of Correlated Quantum Systems

Manmana, Salvatore Rosario 03 June 2015 (has links)
No description available.
6

Spectral functions of low-dimensional quantum systems

Dargel, Piet 30 November 2012 (has links)
No description available.
7

Properties Of The Correlated Electronic States In Conjugated Organic Molecules, Polymers And Metal-Halogen Chains

Anusooya, Y 11 1900 (has links) (PDF)
No description available.
8

Optimalizované simulace kvantových systémů a metoda DMRG / Optimizing quantum simulations and the DMRG method

Brandejs, Jan January 2016 (has links)
Title: Optimizing quantum simulations and the DMRG method Author: Jan Brandejs Department: Department of Chemical Physics and Optics Supervisor: doc. Dr. rer. nat. Jiří Pittner, DSc., J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Abstract: In this work, we explore the quantum information theoretical aspects of simulation of quantum systems on classical computers, in particular the many- electron strongly correlated wave functions. We describe a way how to reduce the amount of data required for storing the wavefunction by a lossy compression of quantum information. For this purpose, we describe the measures of quantum entanglement for the density matrix renormalization group method. We imple- ment the computation of multi-site generalization of mutual information within the DMRG method and investigate entanglement patterns of strongly correlated chemical systems. We present several ways how to optimize the ground state calculation in the DMRG method. The theoretical conclusions are supported by numerical simulations of the diborane molecule, exhibiting chemically interest- ing electronic structure, like the 3-centered 2-electron bonds. In the theoretical part, we give a brief introduction to the principles of the DMRG method. Then we explain the quantum informational...
9

Vývoj nových kvantově-chemických metod pro silně korelované systémy / Coupled clusters tailored by matrix product state wave functions

Antalík, Andrej January 2021 (has links)
The central problem in the modern electronic structure theory is the calculation of cor- relation energy, possibly by an approach that would account for both static and dynamic correlation in an efficient, balanced and accurate way. In this thesis, I present a collection of methods that combine the effective treatment of dynamic correlation by the coupled cluster theory with density matrix renormalization group, a well-established technique for calculations of strongly correlated systems. The connection between them is achieved via the tailored coupled clusters (TCC) ansatz, which conveniently does not impose any ad- ditional computational costs. After the successful initial assessment, we developed more efficient implementations of these methods by employing the local approaches based on pair natural orbitals. This way, we extended the range of possible applications to larger systems with thousands of basis functions. To assess the accuracy of TCC as well as its local counterparts, we performed a variety of benchmark calculations ranging from small, yet challenging systems such as the nitrogen molecule or tetramethyleneethane diradical, to larger molecules like oxo-Mn(Salen) or Fe(II)-porphyrin model. 1
10

A Density-Matrix Renormalization Group Study of Quantum Spin Models with Ring Exchange

Chan, Alexander 10 1900 (has links)
<p>In this thesis we discuss in detail the density-matrix renormalization group (DMRG) for simulating low-energy properties of quantum spin models. We implement an original DMRG routine on the S=1/2 antiferromagnetic Heisenberg chain and benchmark its efficiency against exact results (energies, correlation functions, etc.) as well as conformal field-theoretical calculations due to finite-size scaling (ground-state energy and spin gap logarithmic corrections). Moreover, we apply the DMRG to a two-leg square ladder system, where in addition to bilinear exchange terms, we also consider an additional cyclic four-spin ring-exchange. The transposition of four spins gives rise to biquadratic exchange terms which are non-trivial to implement in the DMRG. Intermediate results of the ring-exchange are presented along with the difficulties presently encountered.</p> / Master of Science (MSc)

Page generated in 0.1198 seconds