Spelling suggestions: "subject:"southerland"" "subject:"e.sutherland""
1 |
Exact eigenstates of the Inozemtsev spin chain / Exakta egentillstånd till Inozemtsevs spinnkedjaLentz, Simon January 2021 (has links)
This thesis deals with the following question: are there more eigenfunctions, other than the already known eigenfunctions, of the spin chain with elliptic interactions known as the Inozemtsev spin chain? The Inozemtsev spin chain interpolates between two quantum integrable spin chains, theHeisenberg spin chain and the Haldane-Shastry spin chain. Therefore it is interesting to explore eigenfunctions of the Inozemtsev spin chain in greater detail. Moreover, there exists connections between spin chains and their corresponding spinless continuum model, namely theCalogero-Sutherland models; a derivation of the connection between the Haldane-Shastry spin chain and the trigonometric interacting Calogero-Sutherland model is presented in this thesis. These connections state that the eigenfunctions of the Calogero-Sutherland model are also eigenfunctionsof the corresponding spin chain. An established connection between the Inozemtsev spin chain and the elliptic interacting Calogero-Sutherland model yields exact eigenfunctions with simple poles at coinciding arguments of the Inozemtsev spin chain. However, there are eigenfunctions of theelliptic Calogero-Sutherland model with second order zeros instead of simple poles at coinciding arguments. It is therefore interesting to see if a connection exists that relates the eigenfunctions of the elliptic Calogero-Sutherland model with second order zeros to eigenfunctionsof the Inozemtsev spin chain also with second order zeros. The main goal of this thesis is to explore eigenfunctions of the Inozemtsev spin chain with second order zeros for two magnons. This thesis uses analytical methods for finding these eigenfunctions and numerical methods have beenresorted to in the end. The numerical results indicate that the functions explored in this thesis fail to parametrise the eigenfunctions of the Inozemtsev spin chain, except for a few special cases. / Den här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
|
2 |
Anyons in (1 + 1) dimensions and the deformed Calogero-Sutherland modelAtai, Farrokh January 2011 (has links)
This thesis deals with a conformal field theoretical treatment of abelian anyons in (1 + 1)-dimensions and their relation to the integrable Calogero-Sutherland models. We generalize previous work relating anyons to the Calogero-Sutherland model by showing that the correlation function of the anyon field operators corresponds to the eigenfunctions of the deformed Calogero-Sutherland model. Our results suggest a physical application of the deformed Calogero-Sutherland model in the context of the fractional quantum Hall effect (FQHE). A key aspect for this work is the introduction of the dual anyon field operators, which obey a natural generalization of the canonical anti-commutation relation.
|
3 |
Accelerating Quantum Monte Carlo via Graphics Processing UnitsHimberg, Benjamin Evert 01 January 2017 (has links)
An exact quantum Monte Carlo algorithm for interacting particles in the spatial continuum is extended to exploit the massive parallelism offered by graphics processing units. Its efficacy is tested on the Calogero-Sutherland model describing a system of bosons interacting in one spatial dimension via an inverse square law. Due to the long range nature of the interactions, this model has proved difficult to simulate via conventional path integral Monte Carlo methods running on conventional processors. Using Graphics Processing Units, optimal speedup factors of up to 640 times are obtained for N = 126 particles. The known results for the ground state energy are confirmed and, for the first time, the effects of thermal fluctuations at finite temperature are explored.
|
4 |
Transporte em nanoestruturas: métodos de movimento Browniano e teoria de circuitosFernandes de Macedo Júnior, Ailton January 2006 (has links)
Made available in DSpace on 2014-06-12T18:04:23Z (GMT). No. of bitstreams: 2
arquivo7752_1.pdf: 2968182 bytes, checksum: b99b78d01729ac83718a680337a6d7f1 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Faculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Os resultados apresentados nesta tese podem ser divididos em duas partes. Na primeira estudamos uma classe de ensembles de movimento browniano (EMB) da teoria de matrizes aleatórias, gerados a partir da teoria matricial de processos estocásticos markovianos. Os ensembles são caracterizados por uma equação de Fokker-Planck e estão intimamente relacionados a hamiltonianos de sistemas quânticos do tipo Calogero-Sutherland. Esta conexão leva a um esquema geral de classificação baseada numa recente generalização multidimensional dos polinômios ortogonais clássicos. Mostramos que, sob certas condições, os EMB englobam os ensembles de matrizes de transferência. Desta forma, desenvolvemos um tratamento unificado dos ensembles de polinômios e de matrizes de transferência que, além de servir como um esquema de classificação das diversas classes de simetria, fornece técnicas eficientes de cálculo. Desenvolvemos métodos de Fokker-Planck para o cálculo de médias de observáveis representados por estatísticas lineares, assim como para o cálculo de funções de correlação. Neste contexto, desenvolvemos um método de transformada integral e uma generalização do método das funções biortogonais para o cálculo da função de correlação de n-pontos. Os resultados deduzidos neste contexto geral são aplicados a pontos e fios quânticos. Em particular, apresentamos um estudo numérico de propriedades de transporte em pontos quânticos com simetria quiral. Na segunda parte, estudamos uma cavidade caótica balística acoplada, via barreiras de transparência arbitrária, a dois guias semi-infinitos usando as duas abordagens de teoria de circuito disponíveis na literatura: a escalar e a matricial. Mostramos a equivalência destas teorias através do cálculo dos cumulantes da estatística de contagem. Para isso, determinamos as funções geratrizes fornecidas pelas duas teorias e verificamos a concordância dos 18 primeiros cumulantes usando um programa de computação algébrica. Também estudamos distribuições exatas de corrente de alguns sistemas simples de dois terminais, como um ponto quântico com barreiras simétricas. Estes resultados são importantes, pois fornecem uma grandeza diretamente mensurável em experimentos
|
5 |
Matrix Quantum Mechanics And Integrable SystemsPehlivan, Yamac 01 July 2004 (has links) (PDF)
In this thesis we improve and extend an algebraic technique pioneered by M. Gaudin. The technique is based on an infinite dimensional Lie algebra and a related family of mutually commuting Hamiltonians. In order to find energy eigenvalues of such Hamiltonians one has to solve the equations of Bethe ansatz. However, in most cases analytical solutions are not available. In this study we examine a special case for which analytical solutions of Bethe ansatz equations are not needed. Instead, some special properties of these equations are utilized to evaluate the energy eigenvalues. We use this method to find exact expressions for the energy eigenvalues of a class of interacting boson models.
In addition to that, we also introduce a q-deformation of the algebra of Gaudin. This deformation leads us to another family of mutually commuting Hamiltonians which we diagonalize using algebraic Bethe ansatz technique. The motivation for this deformation comes from a relationship between Gaudin algebra and a spin extension of the integrable model of F. Calogero. Observing this relation, we then consider a well known periodic version of Calogero' / s model which is due to B. Sutherland. The search for a Gaudin-like algebraic structure which is in a similar relationship with the spin extension of Sutherland' / s model naturally leads to the above mentioned q-deformation of Gaudin algebra. The deformation parameter q and the periodicity d of the Sutherland model are related by the formula q=i{pi}/d.
|
6 |
Espaces dynamiques réduits en physique de la matière condensée :<br />Systèmes à effet Hall bicouches, réduction dimensionnelle et systèmes de spins magnétiquesMöller, Gunnar 21 September 2006 (has links) (PDF)
Pour la description des propriétés de basse température des systèmes en physique de la matière condensée, il est souvent utile de travailler avec un espace dynamique réduit. Cette philosophie s'applique aux systèmes bicouches à effet Hall quantique comme aux systèmes d'anyons et aux systèmes magnétiques frustrés qui représentent les exemples discutés dans cette thèse. <br /><br />On introduit une classe générale d'états appariés de fermions composites. Ces fonctions d'onde sont exploitées pour analyser l'état fondamental des systèmes bicouches à effet Hall au facteur de remplissage total un. A partir d'une étude de Monte Carlo variationnel nous concluons que la transition de phase compressible à incompressible observée dans ce système est du deuxième ordre. Nous étudions également la question de l'existence d'un état apparié à demi-remplissage dans les simples couches. Ensuite nous considérons des schémas de réduction dimensionnelle de systèmes bidimensionnels sur la sphère vers des systèmes unidimensionnels sur le cercle. Un tel mapping est établi pour des systèmes libres et un candidat pour un système d'anyons généralisé est proposé. Finalement, nous analysons les systèmes de spins magnétiques sur réseaux bidimensionnels et discutons si un état de glace de spins peut exister en présence d'interactions dipolaires à longue portée.
|
Page generated in 0.0427 seconds