• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 362
  • 106
  • 92
  • 59
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 5
  • 4
  • Tagged with
  • 839
  • 839
  • 297
  • 137
  • 133
  • 113
  • 98
  • 97
  • 85
  • 84
  • 78
  • 77
  • 72
  • 67
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Catalytic Hydrogenation of Nitrile Rubber in High Concentration Solution

Li, Ting January 2011 (has links)
Chemical modification is an important way to improve the properties of existing polymers, and one of the important examples is the hydrogenation of nitrile butadiene rubber (NBR) in organic solvent by homogeneous catalysis in order to extend its application. This process has been industrialized for many years to provide high performance elastomers (HNBR) for the automotive industry, especially those used to produce components in engine compartments. In the current commercial process, a batch reactor is employed for the hydrogenation step, which is labor intensive and not suitable for large volume of production. Thus, novel hydrogenation devices such as a continuous process are being developed in our research group to overcome these drawbacks. In order to make the process more practical for industrial application, high concentration polymer solutions should be targeted for the continuous hydrogenation. However, many problems are encountered due to the viscosity of the high concentration polymer solution, which increases tremendously as the reaction goes on, resulting in severe mass transfer and heat transfer problems. So, hydrogenation kinetics in high concentration NBR solution, as well as the rheological properties of this viscous solution are very essential and fundamental for the design of novel hydrogenation processes and reactor scale up. In the present work, hydrogenation of NBR in high concentration solution was carried out in a batch reactor. A commercial rhodium catalyst, Wilkinson’s catalyst, was used with triphenylphosphine as the co-catalyst and chlorobenzene as the solvent. The reactor was modified and a PID controller was tuned to fit this strong exothermic reaction. It was observed that when NBR solution is in a high concentration the kinetic behavior was greatly affected by mass transfer processes, especially the gas-liquid mass transfer. Reactor internals were designed and various agitators were investigated to improve the mechanical mixing. Experimental results show that the turbine-anchor combined agitator could provide superior mixing for this viscous reaction system. The kinetic behavior of NBR hydrogenation under low catalyst concentration was also studied. It was observed that the hydrogenation degree of the polymer could not reach 95% if less than 0.1%wt catalyst (based on polymer mass) was used, deviating from the behavior under a normal catalyst concentration. The viscosity of the NBR-MCB solutions was measured in a rotational rheometer that has a cylinder sensor under both room conditions and reaction conditions. Parameters that might affect the viscosity of the solutions were studied, especially the hydrogenation degree of polymer. Rheological properties of NBR-MEK solutions, as well as NBR melts were also studied for relevant information. It is concluded that the hydrogenation kinetics deviates from that reported by Parent et al. [6] when polymer is in high concentration and/or catalyst is in low concentration; and that the reaction solution (HNBR/NBR-MCB solution) deviates from Newtonian behavior when polymer concentration and hydrogenation degree are high.
612

Pressurized low polarity water extraction of lignans, proteins and carbohydrates from flaxseed meal

Ho, Colin Hao Lim 08 January 2007 (has links)
The physiological benefits of flaxseed against pathological disturbances, such as cancers and heart diseases, are mainly attributed to its high lignan content. This study (Experiment 1) examined the application of pressurized low polarity water (PLPW) for extraction of lignans, proteins and carbohydrates from defatted flaxseed meal. Key processing conditions included temperature (130, 160, 190°C), solvent pH (4, 6.5 and 9), solvent to solid ratio (S/S) (90, 150 and 210 mL/g) and introduction of co-packing material (0 and 3 g glass beads). The addition of 3 g glass beads as co-packing material facilitated extraction by enhancing surface contact between the liquid and solid thus shortening extraction time. Elevated temperature accelerated the extraction rate by increasing the solid diffusion coefficient thereby reducing the extraction time. The maximum yield of lignans (99 %) was obtained at temperatures ranging from 160°C to 190°C, with solvent volume of 180 mL (90 mL/g meal) at pH 9. Optimal conditions for protein extraction (70 %) were pH 9, extraction volume of 420 mL (210 mL/g meal) and 160°C. Total carbohydrates yield was maximized at 50% recovery at pH 4 and 160°C with 420 mL solvent (210 mL/g meal). Increased temperature accelerated extraction, thus reducing solvent volume and time to reach equilibrium. For the extraction of proteins, however, a temperature of 130-160°C is recommended, as proteins are vulnerable to thermal degradation due to heat decomposition. The effects of flow rate and geometric dimensions for extraction of lignans and other flaxseed meal bioactives were further investigated in Experiment 2, based on the variables optimized in the previous experiment. Defatted flaxseed meal was extracted with pH 9 buffered water with meal to co-packing glass beads ratio of 1:1.5 at 5.2 MPa (750 psi) and 180°C. The aqueous extracts were analyzed for lignan, protein and carbohydrate using HPLC and colorimetric methods. The optimal extraction yields for lignan, protein and carbohydrate were found at flow rates of 1 to 2 mL/min with bed depth between 20 and 26 cm and a S/S ratio of 40 to 100 mL/g. The combination of low flow rate and high bed depth allowed the use of lower S/S ratio with reduced total solvent volume consumption. This study also evaluated the mass transfer kinetics governing the process of lignan extraction from flaxseed meal in a fixed bed extraction cell. Diffusion of solute into the continuously flowing solvent was mainly responsible for the mass transfer mechanism as flow rate did not increase proportionally with the yield and rate of extraction. The extraction kinetics were studied on the basis of two approaches: Fick’s diffusion equation and a two-site exponential kinetic model. The proposed two-site exponential kinetic model corresponding to the two-stage extraction (rapid and slow phases) successfully described the experimental data. Diffusivities attained from Fick’s diffusion model ranged from 2 x 10-13 to 9 x 10-13 m2s-1 while mass transfer coefficients were between 4.5 x 10-8 and 2.3 x 10-7 ms-1 for extraction of lignans at 180°C, pH 9 with 1:1.5 meal to co-packing material ratio.
613

Tensiometrische Stofftransportuntersuchungen der Zinkextraktion mit dem Kationenaustauscher Di(2-ethylhexyl)phosphorsäure

Klapper, Peter 28 June 2010 (has links) (PDF)
Es werden die Gleichgewichtskonstanten der Zinkextraktion ermittelt. Das Wilson-Modell und das erweiterte Debye-Hückel-Gesetz werden zur Beschreibung der Aktivitäten verwendet. Die tensiometrischen Untersuchungen erfolgen am hängenden Tropfen. Die Modellauswahl zur Beschreibung der Gleichgewichtsgrenzflächenspannung erfolgt im submizellaren Konzentrationsbereich. Die pseudo-nichtionische Modellierung auf der Basis der Langmuir-Isothermen der Mehrkomponentenadsorption bei Verwendung der Stern-Isothermen für die Gegenionenanreicherung liefert die beste Datenanpassung. Durch ein einfaches Modell zur Mizell- und Aggregatbildung gelingt die Modellerweiterung. Die gemessenen dynamischen Grenzflächenspannungskurven werden sorptionskinetisch und durch diffusive Approximationen angepasst. Es zeigt sich, dass der Stofftransport diffusionsdirigiert ist. Am oszillierenden Tropfen werden die Ergebnisse bestätigt. Für das Kationenaustauscheranion wird die Gültigkeit des Maxwell-Modells zur Beschreibung der Grenzflächendilatationsrheologie nachgewiesen.
614

External and Internal Mass Transfer in Biological Wastewater Treatment Systems`

Gapes, Daniel James Unknown Date (has links)
A detailed study has been carried out to demonstrate the importance of external and internal mass transfer on the nitrification rates in three distinct treatment processes: flocculent and granular activated sludge, and suspended carrier reactor (SCR) systems. The major emphasis was on external mass transfer, and the impact of system hydrodynamics on this mechanism. Laboratory-scale flocculent and granular sequencing batch reactors were operated for the nitrification of a synthetic wastewater. A two-stage, continuous, nitrifying SCR was operated using the same wastewater feed. Within each stage, biofilm was grown on two types of commercial carriers- the Natrix C10/10 from ANOX AB (Sweden); and the K1 carrier from Kaldnes Miljøteknologi (Norway). Biofilm carriers obtained from each of these reactors was utilised for the mass transfer investigations. The major findings, and contributions of the work to the field of biological wastewater treatment, are described in the following paragraphs. In order to complete the work, a novel experimental tool, the TOGA (Titrimetric and Off-Gas Analysis) sensor was created, which utilises off-gas mass balancing, coupled with pH titration to provide detailed measurement of biological reaction rates. An original method for off-gas mass balancing was developed, within a reactor that allowed modification of the hydrodynamic conditions using gas phase mixing independent of dissolved oxygen control within the liquid phase. This sensor has already proven to be a highly effective tool not only for the measurement of oxygen but also for carbon dioxide and various nitrogen species, and has application for numerous other compounds present in the gas phase of biological reactors (e.g. hydrogen, methane). The application of the TOGA sensor signals to the nitrification process was demonstrated, which enabled the online measurement of oxygen, ammonia, and nitrite reaction rates. The TOGA sensor development underpinned the majority of the subsequent experimental work within this thesis. Dissolved oxygen microelectrodes were also used, enabling microscale measurements to be made in conjunction with the macroscale TOGA sensor analyses. Combined with size and microbiological analyses a detailed study of mass transfer and reaction was able to be carried out on the various systems. For suspended aggregate systems (flocs and granules): A spherical particle model was developed and used to predict the potential for external mass transfer limitation in flocs and granules. The significance of this limitation was confirmed experimentally, by observing changes in reaction rate or concentration boundary layer (in the TOGA sensor or microelectrode study, respectively) upon modification of the system’s flow conditions. Despite this flow effect being small, and only observable under low bulk liquid substrate concentrations, the external mass transfer limitation was concluded to be significant for biological flocs and granules even at higher substrate concentrations. As particle size and the maximum volumetric reaction rate of the biomass increases, external mass transfer effects become increasingly significant. The work highlights the impact of mass transfer limitation on the measurement of Monod half saturation coefficients (KS) in flocs and granules. Without accounting for external or internal mass transfer limitation, KS is seriously overestimated and becomes a lumped parameter, reflecting not only the microbial response but also the mass transfer limitations observed within the system under study. To avoid confusion or generation of erroneous results, care should be taken in defining, measuring and utilising the half saturation coefficient in biological systems where the biomass is not present as individual cells or extremely small flocs. For Suspended Carrier Reactor systems: External and internal mass transfer are both concluded to be important rate limiting steps within suspended carrier reactors. The demonstration of a significant impact of fluid flow conditions on the nitrification rates highlights the impact of external mass transfer limitation within these systems. Application of a one-dimensional biofilm model to the experimental results led to the conclusion that there is little difference between the external mass transfer limitation of the two different carrier types, for carriers grown under the same environmental conditions. However, there was a significantly higher areal nitrification rate observed on the Natrix carriers compared to the Kaldnes carriers. It is the biofilm structure that is critically important in characterising the mass transfer steps. Systems operated under high nitrogen loads, producing filamentous biofilms on the carrier surface, were found to have larger external mass transfer coefficients and responses to changes in fluid flow than those carriers which were operated under nitrogen-limited conditions (producing a flatter, more gel-like biofilm). The structure of the biofilm colonising the carrier surface was far more important in defining the mass transfer coefficient than the actual carrier type used. In a remarkably similar trend to that of the external mass transfer coefficient, the biofilm morphology was again significantly more important than carrier type in determining both the magnitude and response to fluid flow of the gas-liquid mass transfer coefficient for oxygen (kLa) calculated within the laboratory TOGA sensor. These findings led to the postulation that direct gas-biofilm interfacial mass transfer mechanism is occurring within the SCR systems. This hypothesis is an alternative to the standard mechanism of gas transfer from the bubble into the liquid phase, and then into the biofilm. Understanding of interfacial transfer is likely to be important for developing the knowledge of SCR processes. Overall, both external and internal mass transfer phenomena have been demonstrated to create important rate limitations to suspended aggregate systems (flocs and granules) and biofilms grown in suspended carrier reactors. This significantly advances the conceptual understanding of these biological treatment processes.
615

External and Internal Mass Transfer in Biological Wastewater Treatment Systems`

Gapes, Daniel James Unknown Date (has links)
A detailed study has been carried out to demonstrate the importance of external and internal mass transfer on the nitrification rates in three distinct treatment processes: flocculent and granular activated sludge, and suspended carrier reactor (SCR) systems. The major emphasis was on external mass transfer, and the impact of system hydrodynamics on this mechanism. Laboratory-scale flocculent and granular sequencing batch reactors were operated for the nitrification of a synthetic wastewater. A two-stage, continuous, nitrifying SCR was operated using the same wastewater feed. Within each stage, biofilm was grown on two types of commercial carriers- the Natrix C10/10 from ANOX AB (Sweden); and the K1 carrier from Kaldnes Miljøteknologi (Norway). Biofilm carriers obtained from each of these reactors was utilised for the mass transfer investigations. The major findings, and contributions of the work to the field of biological wastewater treatment, are described in the following paragraphs. In order to complete the work, a novel experimental tool, the TOGA (Titrimetric and Off-Gas Analysis) sensor was created, which utilises off-gas mass balancing, coupled with pH titration to provide detailed measurement of biological reaction rates. An original method for off-gas mass balancing was developed, within a reactor that allowed modification of the hydrodynamic conditions using gas phase mixing independent of dissolved oxygen control within the liquid phase. This sensor has already proven to be a highly effective tool not only for the measurement of oxygen but also for carbon dioxide and various nitrogen species, and has application for numerous other compounds present in the gas phase of biological reactors (e.g. hydrogen, methane). The application of the TOGA sensor signals to the nitrification process was demonstrated, which enabled the online measurement of oxygen, ammonia, and nitrite reaction rates. The TOGA sensor development underpinned the majority of the subsequent experimental work within this thesis. Dissolved oxygen microelectrodes were also used, enabling microscale measurements to be made in conjunction with the macroscale TOGA sensor analyses. Combined with size and microbiological analyses a detailed study of mass transfer and reaction was able to be carried out on the various systems. For suspended aggregate systems (flocs and granules): A spherical particle model was developed and used to predict the potential for external mass transfer limitation in flocs and granules. The significance of this limitation was confirmed experimentally, by observing changes in reaction rate or concentration boundary layer (in the TOGA sensor or microelectrode study, respectively) upon modification of the system’s flow conditions. Despite this flow effect being small, and only observable under low bulk liquid substrate concentrations, the external mass transfer limitation was concluded to be significant for biological flocs and granules even at higher substrate concentrations. As particle size and the maximum volumetric reaction rate of the biomass increases, external mass transfer effects become increasingly significant. The work highlights the impact of mass transfer limitation on the measurement of Monod half saturation coefficients (KS) in flocs and granules. Without accounting for external or internal mass transfer limitation, KS is seriously overestimated and becomes a lumped parameter, reflecting not only the microbial response but also the mass transfer limitations observed within the system under study. To avoid confusion or generation of erroneous results, care should be taken in defining, measuring and utilising the half saturation coefficient in biological systems where the biomass is not present as individual cells or extremely small flocs. For Suspended Carrier Reactor systems: External and internal mass transfer are both concluded to be important rate limiting steps within suspended carrier reactors. The demonstration of a significant impact of fluid flow conditions on the nitrification rates highlights the impact of external mass transfer limitation within these systems. Application of a one-dimensional biofilm model to the experimental results led to the conclusion that there is little difference between the external mass transfer limitation of the two different carrier types, for carriers grown under the same environmental conditions. However, there was a significantly higher areal nitrification rate observed on the Natrix carriers compared to the Kaldnes carriers. It is the biofilm structure that is critically important in characterising the mass transfer steps. Systems operated under high nitrogen loads, producing filamentous biofilms on the carrier surface, were found to have larger external mass transfer coefficients and responses to changes in fluid flow than those carriers which were operated under nitrogen-limited conditions (producing a flatter, more gel-like biofilm). The structure of the biofilm colonising the carrier surface was far more important in defining the mass transfer coefficient than the actual carrier type used. In a remarkably similar trend to that of the external mass transfer coefficient, the biofilm morphology was again significantly more important than carrier type in determining both the magnitude and response to fluid flow of the gas-liquid mass transfer coefficient for oxygen (kLa) calculated within the laboratory TOGA sensor. These findings led to the postulation that direct gas-biofilm interfacial mass transfer mechanism is occurring within the SCR systems. This hypothesis is an alternative to the standard mechanism of gas transfer from the bubble into the liquid phase, and then into the biofilm. Understanding of interfacial transfer is likely to be important for developing the knowledge of SCR processes. Overall, both external and internal mass transfer phenomena have been demonstrated to create important rate limitations to suspended aggregate systems (flocs and granules) and biofilms grown in suspended carrier reactors. This significantly advances the conceptual understanding of these biological treatment processes.
616

Boundary layer flow fields around rotating spheres.

Zhu, Xijia. Round, G.F. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 57-03, Section: B, page: 2118. Adviser: G. F. Round.
617

Etude d'un système innovant de rafraîchissement basse consommation pour le bâtiment / Study of an innovative low energy cooling system for buildings

Leroux, Guilian 21 October 2016 (has links)
Pour faire face à la forte augmentation de la consommation en climatisation et la consommation électrique associée, il est nécessaire de développer des systèmes de rafraîchissement basse consommation de bâtiment. Ce travail propose un nouveau système de rafraîchissement qui se veut économe en énergie, peu coûteux et simple à installer. Il associe les techniques de dissipation de chaleur par évaporation, rayonnement vers le ciel et géothermie. Ce système est constitué d'un réservoir poreux installé en extérieur et d'un réservoir de stockage placé dans le vide sanitaire. Lorsque le bâtiment a besoin de rafraîchissement, une pompe puise de l'eau fraîche dans le stockage, la fait passer dans le plancher rafraîchissant pour absorber la chaleur excédentaire du bâtiment puis stocke l'eau dans le réservoir poreux placé à l'extérieur. Le réservoir poreux refroidit l'eau qu'il contient par évaporation, rayonnement vers le ciel puis se vide dans le stockage. Le réservoir de stockage installé dans le vide sanitaire se refroidit aussi en continu grâce au contact direct avec le sol. Les propriétés poreuses et la géométrie du réservoir poreux influent fortement sur ses performances de refroidissement. Une étude paramétrique menée avec un modèle numérique simulant les transferts hydriques et thermique permet de choisir un réservoir adéquat pour cette application. Un réservoir poreux donnant de bonnes performances (70 W/m2 de puissance évaporative) a été identifié. Le système de rafraîchissement a été installé et testé expérimentalement sur une maison à échelle réelle à Bordeaux. Mis en service durant l'été 2015, le système a fonctionné de façon autonome durant 44 jours. L'utilisation de ce système a permis de maintenir durant la période de test un très bon confort thermique à l'intérieur d'un bâtiment expérimental bien isolé, non ventilé, avec des apports solaires, tout en ayant une consommation électrique faible (le COP moyen du système est de 20.8). Un modèle numérique du système complet a été développé sous Modelica, calibré sur les mesures expérimentales puis couplé à un modèle de bâtiment. Les résultats de simulation montrent que l'installation de ce système améliore nettement le confort intérieur du bâtiment sur l'ensemble de l'été pour toutes les configurations testées (climat, gestion des voletsdots). Un système aux dimensions optimisées (avec un stockage de 2.2 m3 et un réservoir poreux de 0.215 m3), installé sur une maison individuelle type RT2012 de 100 m2 à Bordeaux, fonctionne avec un COP moyen de 24 et permet de maintenir un bon niveau de confort à l'intérieur du bâtiment tout l'été. / To face the dramatic increase of energy consumption due to air conditioning use in buildings, new low energy consumption systems need to be developed. This work proposes a new cooling system which aims to be energy efficient, cheap and easy to install. This system takes advantage of evaporation cooling, ground earth cooling and sky radiative cooling techniques. The two main components of this new system are a porous tank set outside and a storage tank set in the basement of the building. When the inside house temperature exceeds the comfort temperature, cool water passes from the storage tank through the cooling floor, removes heat from the building and is then send to the porous tank. The water contained in the porous tank is cooled down due to evaporation and radiative effects and then flows back to the storage. The storage tank installed in the basement enables further cooling of the water thanks to direct contact with the ground. Porous properties and geometry of the tank have a great influence on the cooling performances of the tank. A heat and mass transfer model has been developed to simulate the thermal and hydric behavior of the tank. This model has been used to choose an appropriate tank. A tank giving good performances (70 W/m2 of evaporative power) is identified. The complete cooling system has been installed on a house in Bordeaux and tested at real scale during an experimental campaign. The system worked for 44 days during summer 2015 and allowed to maintain a very good thermal comfort level in the experimental building (insulated, with solar load and without ventilation). Its very low electricity needs brings the average coefficient of performance of the system to 20.8. A numerical model of the system has been developed, calibrated with experimental data and coupled with a building model. Simulation results show that for all tested configurations (climate, shading…), the system clearly improves the thermal comfort in the building. Optimized sizing, keepinp reasonnable tank sizes (storage and evaporator volumes of 2.2 m3 and 0.215 m3 respectively), shows that this system works with an average COP of 24 and maintains a good comfort level in an individual house of 100 m2 located in Bordeaux.
618

Transferts de chaleur et de masse dans un bain liquide avec fusion de la paroi et effets de composition / Heat and mass transfer in a liquid pool with wall ablation and composition effects

Pham, Quynh Trang 09 April 2013 (has links)
Ce travail traite de la thermohydraulique d’un bain de melt couplée à la physicochimie pour ladescription du comportement de mélanges de matériaux (non-eutectiques).On décrit le transitoire d’établissement de température dans un liquide avec dégagement de puissancevolumique en présence de solidification sur une paroi refroidie. Le modèle développé à cet effet estvalidé par rapport aux résultats des essais LIVE réalisés à KIT. Dans les conditions de ces essais onmontre que la température d’interface suit la température liquidus (correspondant à la composition dubain liquide) pendant le transitoire d’établissement de la température dans le bain et des croûtessolides.Par ailleurs, on propose un modèle d’interaction entre un liquide non-eutectique (soumis à dissipationvolumique de puissance) et une paroi fusible dont la température de fusion est inférieure à latempérature liquidus du bain. Les prédictions du modèle sont comparées aux résultats des essaisARTEMIS 2D. On en déduit une nouvelle formulation de la température d’interface (inférieure àliquidus température) entre le liquide et la couche pâteuse en paroi. / This work deals with the thermal-hydraulics of a melt pool coupled with the physical chemistry for thepurpose of describing the behaviour of mixtures of materials (non-eutectic).Evolution of transient temperature in a liquid melt pool heated by volumetric power dissipation hasbeen described with solidification on the cooled wall. The model has been developed and is validatedfor the experimental results given by LIVE experiment, performed at Karlsruhe Institute ofTechnology (KIT) in Germany. Under the conditions of these tests, it is shown that the interfacetemperature follows the liquidus temperature (corresponding to the composition of the liquid bath)during the whole transient. Assumption of interface temperature as liquidus temperature allowsrecalculating the evolution of the maximum melt temperature as well as the local crust thickness.Furthermore, we propose a model for describing the interaction between a non-eutectic liquid meltpool (subjected to volumetric power dissipation) and an ablated wall whose melting point is below theliquidus temperature of the melt. The model predictions are compared with results of ARTEMIS 2Dtests. A new formulation of the interface temperature between the liquid melt and the solid wall(below liquidus temperature) has been proposed.
619

Impact des opérations thermiques agroalimentaires à hautes températures sur la dégradation des anthocyanes : caractérisation et modélisation des cinétiques réactionnelles / Impact of food thermal operations at high temperature on the degradation of anthocyanins : characterization and modeling of reaction kinetics

Jimenez Elizondo, Nadiarid 13 December 2011 (has links)
Compte tenu de l'importance des pigments naturels dans les aliments et leur sensibilité aux traitements thermiques, les cinétiques de dégradation des anthocyanes ont été étudiées à très hautes températures (100 à 180 ºC). Pour obtenir une base de données expérimentale fiable dissociant les transferts d'énergie et de matière, un mini-réacteur étanche a été utilisé pour le traitement d'une matrice modèle (jus de mûre et sable) en faisant varier la température et l'activité de l'eau (0,20<aw<0,99). L'hypothèse d'une réaction d'ordre 1 pour la dégradation des anthocyanes a permis de modéliser et de déterminer les paramètres cinétiques suivant une méthode non-isotherme prenant en compte à la fois le profil de température et indépendamment l'homogénéité ou l'hétérogénéité du champs de température au sein de la matrice. Il a été démontré que les constantes de réaction sont très influencées par la diminution de l'activité de l'eau, facteur qui fait augmenter la réactivité. Ces résultats originaux ont été validés sur une matrice alimentaire (papaye verte-jus de mûre) soumise au couplage d'un procédé de formulation par déshydratation par immersion-imprégnation, suivi d'une opération de friture, à l'aide d'un modèle qui intègre les transferts de vapeur et d'énergie et la cinétique réactionnelle. Le modèle permet une meilleure compréhension des phénomènes et il peut être intégré dans une démarche d'optimisation séquentielle associant différentes opérations unitaires avec des traitements thermiques à très hautes températures. / Given the importance of natural pigments in foods and their sensitivity to heat treatment, degradation kinetics of anthocyanins have been studied at very high temperatures (100 to 180 ºC). For a reliable experimental database that dissociates heat and mass transfer, a hermetic mini-reactor was used for the treatment of a model matrix (blackberry juice and sand) by varying the temperature and activity water (0.20<aw<0.99). The assumption of a first order reaction for the anthocyanins degradation was used to model and determine the kinetic parameters using a non-isothermal method taking into account both the temperature profile and independently the homogeneity or heterogeneity of the matrix temperature field. It has been shown that the rate constants are strongly influenced by the water activity reduction, a factor that increases the anthocyanins reactivity. These original results were validated on a food matrix (green papaya-blackberry juice) submitted to the coupling of a formulation process by osmotic dehydration, followed by a deep-fat frying operation, using a model which includes the vapor and heat transfer and the reaction kinetics. The model allows a better understanding of the phenomena and can be integrated into a sequential optimization approach combining different unit operations with heat treatments at high temperatures.
620

Innovating microstructured gas-liquid-solid reactors : a contribution to the understanding of hydrodynamics and mass transfers / Réacteurs gaz-liquide-solides innovants : contribution à la compréhension de l'hydrodynamique et des transferts de masses

Tourvieille, Jean-Noël 26 February 2014 (has links)
Afin de répondre aux nouveaux challenges de l'industrie chimique, le développement de nouveaux réacteurs catalytiques hétérogènes plus efficaces et plus sûrs ainsi que leur compréhension sont nécessaires. Dans cette optique, des réacteurs micro ou milli-structurés ont vu le jour et suscitent un intérêt croissant de par leur capacité à diminuer les phénomènes physiques de limitations aux transferts de mantière et de chaleur. Dans ce travail, deux concepts de réacteurs structurés dédiés au milieu gaz-liquide solide sont étudiés. Le premier est un réacteur à film tombant microstructuré (FFMR) dans lequel des canaux sub-millimétriques, rectilignes et verticaux permettent de stabiliser et d'amincir un film liquide en écoulement, générant des aires d'interfaces très importantes. Disponible commercialement, il présente un très bon potentiel pour la mise en oeuvre de réactions à fortes contraintes mais pour de petites productions. Le second réacteur est quant à lui nouveau. Des mousses à cellules ouvertes métalliques sont utilisées comme support de catalyseur structurant confiné dans un canal de section millimétrique carrée et soumis à un écoulement de Taylor G-L préformé. Pour chaque réacteur, l'hydrodynamique des écoulements est étudiée par le développement de techniques microscopiques et leurs aptitudes aux transferts de masses sont évaluées par la mise en oeuvre de la réaction catalytique d'hydrogénation de l'α-methylstyrène. Il en ressort que les écoulements particuliers rencontrés dans ces deux objets permettent d'atteindre des capacités de transferts de matières supérieurs d'au moins un ordre de grandeur aux technologies usuelles pour un coût énergétique, lié à l'écoulements des fluides, faible. Par ailleurs, des éléments de dimensionnement (hydrodynamique, perte de charge et transferts de matière) ont été construits pour les deux réacteurs / To meet the new challenges of the chemical indutries, the developpement of new heterogeneous catalytic reactors and their understanding are mandatory. From these perspectives, new reactor designs based on structuring at micro or millimeter scales have emerged. They have sparked interest for their ability to decrease physical limitations for heat and mass transfers. Thus, two advanced reactor technologies for gas-liquid-solid catalysed reactions are studied. The first reactor is a micro-structured falling film (FFMR) in which vertical sub millimetric grooves are etched and coated with a catalyst. This structuration allows stabilizing the gas-liquid interface of a down flow liquid phase. A thin liquid film is generated leading to high specific surface areas. Commercially available, it represents a very good potential for performing demanding reactions (i.e.fast, exothermic) for small scale productions such as pharmaceuticals. In a second part, a new reactor concept is proposed. Open cell foams are used as catalyst support and inserted in a milli-square channel. The reactor is then submitted to a preformed gas-liquid Taylor flow. In both cases, hydrodynamics features are studied by using microscopy based methods. Their potential in terms of mass transfers are also studied by performing catalyzed α-methylstyren hydrogenation. For both reactors, it comes out that the particular flow induced by micro or milli structures leads to at least one order of magnitude higher mass transfers performances than mutliphase reactors currently used in the industry albeit it remains to be demonstrated at such scale. From all these studies, correlations, models and methods for chemical engineers (hydrodynamics, pressure drops, mass transfer) are proposed for the two reactors

Page generated in 0.0493 seconds