Spelling suggestions: "subject:"masterslave networks"" "subject:"masterjslave networks""
1 |
Bifurcações em PLLs de terceira ordem em redes OWMS. / Bifurcations on 3rd order PLLs in OWMS networks.Marmo, Carlos Nehemy 23 October 2008 (has links)
Este trabalho apresenta um estudo qualitativo das equações diferenciais nãolineares que descrevem o sincronismo de fase nos PLLs de 3ª ordem que compõem redes OWMS de topologia mista, Estrela Simples e Cadeia Simples. O objetivo é determinar, através da Teoria de Bifurcações, os valores ou relações entre os parâmetros constitutivos da rede que permitam a existência e a estabilidade do estado síncrono, quando são aplicadas, no oscilador mestre, duas funções de excitação muito comuns na prática: o degrau e a rampa de fase. Na determinação da estabilidade dos pontos de equilíbrio, sob o ponto de vista de Lyapunov, a existência de pontos de equilíbrio não-hiperbólicos não permite uma aproximação linear e, nesses casos, é aplicado o Teorema da Variedade Central. Essa técnica de simplificação de sistemas dinâmicos permite fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases e possibilitando determinar localmente suas estabilidades. / This work presents a qualitative study of the non-linear differential equations that describe the synchronous state in 3rd order PLLs that compose One-way masterslave time distribution networks with Single Star and Single Chain topologies. Using bifurcation theory, the dynamical behavior of third-order phase-locked loops employed to extract the syncronous state in each node is analyzed depending on constitutive node parameters when two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node. When parameter combinations result in non hyperbolic synchronous states, from Lyapunov point of view, the linear approximation does not provide any information about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in the neighborhood of these points. Thus, the local stability can be determined.
|
2 |
Sincronismo em redes mestre-escravo de via-única: estrela simples, cadeia simples e mista. / One-way master-slave synchronization networks: single star, single chain and mixed.Marmo, Carlos Nehemy 31 July 2003 (has links)
Neste trabalho, são estudados os problemas de sincronismo de fase nas redes mestre-escravo de via única (OWMS), nas topologias Estrela Simples, Cadeia Simples e mista, através da Teoria Qualitativa de Equações Diferenciais, com ênfase no Teorema da Variedade Central. Através da Teoria das Bifurcações, analisa-se o comportamento dinâmico das malhas de sincronismo de fase (PLL) de segunda ordem que compõem cada rede, frente às variações nos seus parâmetros constitutivos. São utilizadas duas funções de excitação muito comuns na prática: o degrau e a rampa de fase, aplicadas pelo nó mestre. Em cada caso, discute-se a existência e a estabilidade do estado síncrono. A existência de pontos de equilíbrio não-hiperbólicos, não permite uma aproximação linear, e nesses casos é aplicado o Teorema da Variedade Central. Através dessa rigorosa técnica de simplificação de sistemas dinâmicos é possível fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases. Desse modo, é possível determinar, localmente, suas estabilidades. / This work presents stability analysis of the syncronous state for three types of one-way master-slave time distribution network topologies: single star, single chain and both of them, mixed. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the syncronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node and, in each case, the existence and stability of the syncronous state are studied. For parameter combinations resulting in non hyperbolic synchronous states, the linear approximation does not provide any information, even about the local behaviour of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behaviour of the original system in the neighborhood of these points. Thus, the local stability can be determined.
|
3 |
Sincronismo em redes mestre-escravo de via-única: estrela simples, cadeia simples e mista. / One-way master-slave synchronization networks: single star, single chain and mixed.Carlos Nehemy Marmo 31 July 2003 (has links)
Neste trabalho, são estudados os problemas de sincronismo de fase nas redes mestre-escravo de via única (OWMS), nas topologias Estrela Simples, Cadeia Simples e mista, através da Teoria Qualitativa de Equações Diferenciais, com ênfase no Teorema da Variedade Central. Através da Teoria das Bifurcações, analisa-se o comportamento dinâmico das malhas de sincronismo de fase (PLL) de segunda ordem que compõem cada rede, frente às variações nos seus parâmetros constitutivos. São utilizadas duas funções de excitação muito comuns na prática: o degrau e a rampa de fase, aplicadas pelo nó mestre. Em cada caso, discute-se a existência e a estabilidade do estado síncrono. A existência de pontos de equilíbrio não-hiperbólicos, não permite uma aproximação linear, e nesses casos é aplicado o Teorema da Variedade Central. Através dessa rigorosa técnica de simplificação de sistemas dinâmicos é possível fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases. Desse modo, é possível determinar, localmente, suas estabilidades. / This work presents stability analysis of the syncronous state for three types of one-way master-slave time distribution network topologies: single star, single chain and both of them, mixed. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the syncronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node and, in each case, the existence and stability of the syncronous state are studied. For parameter combinations resulting in non hyperbolic synchronous states, the linear approximation does not provide any information, even about the local behaviour of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behaviour of the original system in the neighborhood of these points. Thus, the local stability can be determined.
|
4 |
Bifurcações em PLLs de terceira ordem em redes OWMS. / Bifurcations on 3rd order PLLs in OWMS networks.Carlos Nehemy Marmo 23 October 2008 (has links)
Este trabalho apresenta um estudo qualitativo das equações diferenciais nãolineares que descrevem o sincronismo de fase nos PLLs de 3ª ordem que compõem redes OWMS de topologia mista, Estrela Simples e Cadeia Simples. O objetivo é determinar, através da Teoria de Bifurcações, os valores ou relações entre os parâmetros constitutivos da rede que permitam a existência e a estabilidade do estado síncrono, quando são aplicadas, no oscilador mestre, duas funções de excitação muito comuns na prática: o degrau e a rampa de fase. Na determinação da estabilidade dos pontos de equilíbrio, sob o ponto de vista de Lyapunov, a existência de pontos de equilíbrio não-hiperbólicos não permite uma aproximação linear e, nesses casos, é aplicado o Teorema da Variedade Central. Essa técnica de simplificação de sistemas dinâmicos permite fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases e possibilitando determinar localmente suas estabilidades. / This work presents a qualitative study of the non-linear differential equations that describe the synchronous state in 3rd order PLLs that compose One-way masterslave time distribution networks with Single Star and Single Chain topologies. Using bifurcation theory, the dynamical behavior of third-order phase-locked loops employed to extract the syncronous state in each node is analyzed depending on constitutive node parameters when two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node. When parameter combinations result in non hyperbolic synchronous states, from Lyapunov point of view, the linear approximation does not provide any information about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in the neighborhood of these points. Thus, the local stability can be determined.
|
Page generated in 0.076 seconds