41 |
Newborn EEG seizure detection using adaptive time-frequency signal processingRankine, Luke January 2006 (has links)
Dysfunction in the central nervous system of the neonate is often first identified through seizures. The diffculty in detecting clinical seizures, which involves the observation of physical manifestations characteristic to newborn seizure, has placed greater emphasis on the detection of newborn electroencephalographic (EEG) seizure. The high incidence of newborn seizure has resulted in considerable mortality and morbidity rates in the neonate. Accurate and rapid diagnosis of neonatal seizure is essential for proper treatment and therapy. This has impelled researchers to investigate possible methods for the automatic detection of newborn EEG seizure. This thesis is focused on the development of algorithms for the automatic detection of newborn EEG seizure using adaptive time-frequency signal processing. The assessment of newborn EEG seizure detection algorithms requires large datasets of nonseizure and seizure EEG which are not always readily available and often hard to acquire. This has led to the proposition of realistic models of newborn EEG which can be used to create large datasets for the evaluation and comparison of newborn EEG seizure detection algorithms. In this thesis, we develop two simulation methods which produce synthetic newborn EEG background and seizure. The simulation methods use nonlinear and time-frequency signal processing techniques to allow for the demonstrated nonlinear and nonstationary characteristics of the newborn EEG. Atomic decomposition techniques incorporating redundant time-frequency dictionaries are exciting new signal processing methods which deliver adaptive signal representations or approximations. In this thesis we have investigated two prominent atomic decomposition techniques, matching pursuit and basis pursuit, for their possible use in an automatic seizure detection algorithm. In our investigation, it was shown that matching pursuit generally provided the sparsest (i.e. most compact) approximation for various real and synthetic signals over a wide range of signal approximation levels. For this reason, we chose MP as our preferred atomic decomposition technique for this thesis. A new measure, referred to as structural complexity, which quantifes the level or degree of correlation between signal structures and the decomposition dictionary was proposed. Using the change in structural complexity, a generic method of detecting changes in signal structure was proposed. This detection methodology was then applied to the newborn EEG for the detection of state transition (i.e. nonseizure to seizure state) in the EEG signal. To optimize the seizure detection process, we developed a time-frequency dictionary that is coherent with the newborn EEG seizure state based on the time-frequency analysis of the newborn EEG seizure. It was shown that using the new coherent time-frequency dictionary and the change in structural complexity, we can detect the transition from nonseizure to seizure states in synthetic and real newborn EEG. Repetitive spiking in the EEG is a classic feature of newborn EEG seizure. Therefore, the automatic detection of spikes can be fundamental in the detection of newborn EEG seizure. The capacity of two adaptive time-frequency signal processing techniques to detect spikes was investigated. It was shown that a relationship between the EEG epoch length and the number of repetitive spikes governs the ability of both matching pursuit and adaptive spectrogram in detecting repetitive spikes. However, it was demonstrated that the law was less restrictive forth eadaptive spectrogram and it was shown to outperform matching pursuit in detecting repetitive spikes. The method of adapting the window length associated with the adaptive spectrogram used in this thesis was the maximum correlation criterion. It was observed that for the time instants where signal spikes occurred, the optimal window lengths selected by the maximum correlation criterion were small. Therefore, spike detection directly from the adaptive window optimization method was demonstrated and also shown to outperform matching pursuit. An automatic newborn EEG seizure detection algorithm was proposed based on the detection of repetitive spikes using the adaptive window optimization method. The algorithm shows excellent performance with real EEG data. A comparison of the proposed algorithm with four well documented newborn EEG seizure detection algorithms is provided. The results of the comparison show that the proposed algorithm has significantly better performance than the existing algorithms (i.e. Our proposed algorithm achieved a good detection rate (GDR) of 94% and false detection rate (FDR) of 2.3% compared with the leading algorithm which only produced a GDR of 62% and FDR of 16%). In summary, the novel contribution of this thesis to the fields of time-frequency signal processing and biomedical engineering is the successful development and application of sophisticated algorithms based on adaptive time-frequency signal processing techniques to the solution of automatic newborn EEG seizure detection.
|
42 |
Dynamické rozpoznávání scény pro navigaci mobilního robotu / Dynamic Scene Understanding for Mobile Robot NavigationMikšík, Ondřej January 2012 (has links)
Diplomová práce se zabývá porozuměním dynamických scén pro navigaci mobilních robotů. V první části předkládáme nový přístup k "sebe-učícím" modelům - fůzi odhadu úběžníku cesty založeného na frekvenčním zpracování a pravděpodobnostních modelech využívající barvu pro segmentaci. Detekce úběžníku cesty je založena na odhadu dominantních orientací texturního toku, získáného pomocí banky Gaborových vlnek, a hlasování. Úběžník cesty poté definuje trénovací oblast, která se využívá k samostatnému učení barevných modelů. Nakonec, oblasti tvořící cestu jsou vybrány pomocí měření Mahalanobisovi vzdálenosti. Pár pravidel řeší situace, jako jsou mohutné stíny, přepaly a rychlost adaptivity. Kromě toho celý odhad úběžníku cesty je přepracován - vlnky jsou nahrazeny aproximacemi pomocí binárních blokových funkcí, což umožňuje efektivní filtraci pomocí integrálních obrazů. Nejužší hrdlo celého algoritmu bylo samotné hlasování, proto překládáme schéma, které nejdříve provede hrubý odhad úběžníku a následně jej zpřesní, čímž dosáhneme výrazně vyšší rychlosti (až 40x), zatímco přesnost se zhorší pouze o 3-5%. V druhé části práce předkládáme vyhlazovací filtr pro prostorovo-časovou konzistentnost predikcí, která je důležitá pro vyspělé systémy. Klíčovou částí filtru je nová metrika měřící podobnost mezi třídami, která rozlišuje mnohem lépe než standardní Euclidovská vzdálenost. Tato metrika může být použita k nejrůznějším úlohám v počítačovém vidění. Vyhlazovací filtr nejdříve odhadne optický tok, aby definoval lokální okolí. Toto okolí je použito k rekurzivní filtraci založené na podobnostní metrice. Celková přesnost předkládané metody měřená na pixelech, které nemají shodné predikce mezi původními daty a vyfiltrovanými, je téměř o 18% vyšší než u původních predikcí. Ačkoliv využíváme SHIM jako zdroj původních predikcí, algoritmus může být kombinován s kterýmkoliv jiným systémem (MRF, CRF,...), který poskytne predikce ve formě pravěpodobností. Předkládaný filtr představuje první krok na cestě k úplnému usuzování.
|
43 |
Contributions à l'étude de détection des bandes libres dans le contexte de la radio intelligente. / Contributions to the study of free bands detection in the context of Cognitive RadioKhalaf, Ziad 08 February 2013 (has links)
Les systèmes de communications sans fil ne cessent de se multiplier pour devenir incontournables de nos jours. Cette croissance cause une augmentation de la demande des ressources spectrales, qui sont devenues de plus en plus rares. Afin de résoudre ce problème de pénurie de fréquences, Joseph Mitola III, en 2000, a introduit l'idée de l'allocation dynamique du spectre. Il définit ainsi le terme « Cognitive Radio » (Radio Intelligente), qui est largement pressenti pour être le prochain Big Bang dans les futures communications sans fil [1]. Dans le cadre de ce travail on s'intéresse à la problématique du spectrum sensing qui est la détection de présence des Utilisateurs Primaires dans un spectre sous licence, dans le contexte de la radio intelligente. L'objectif de ce travail est de proposer des méthodes de détection efficaces à faible complexité et/ou à faible temps d'observation et ceci en utilisant le minimum d'information a priori sur le signal à détecter. Dans la première partie on traite le problème de détection d'un signal aléatoire dans le bruit. Deux grandes méthodes de détection sont utilisées : la détection d'énergie ou radiomètre et la détection cyclostationnaire. Dans notre contexte, ces méthodes sont plus complémentaires que concurrentes. Nous proposons une architecture hybride de détection des bandes libres, qui combine la simplicité du radiomètre et la robustesse des détecteurs cyclostationnaires. Deux méthodes de détection sont proposées qui se basent sur cette même architecture. Grâce au caractère adaptatif de l'architecture, la détection évolue au cours du temps pour tendre vers la complexité du détecteur d'énergie avec des performances proches du détecteur cyclostationnaire ou du radiomètre selon la méthode utilisée et l'environnement de travail. Dans un second temps on exploite la propriété parcimonieuse de la Fonction d'Autocorrelation Cyclique (FAC) pour proposer un nouvel estimateur aveugle qui se base sur le compressed sensing afin d'estimer le Vecteur d'Autocorrelation Cyclique (VAC), qui est un vecteur particulier de la Fonction d'Autocorrelation Cyclique pour un délai fixe. On montre par simulation que ce nouvel estimateur donne de meilleures performances que celles obtenues avec l'estimateur classique, qui est non aveugle et ceci dans les mêmes conditions et en utilisant le même nombre d'échantillons. On utilise l'estimateur proposé, pour proposer deux détecteurs aveugles utilisant moins d'échantillons que nécessite le détecteur temporel de second ordre de [2] qui se base sur l'estimateur classique de la FAC. Le premier détecteur exploite uniquement la propriété de parcimonie du VAC tandis que le second détecteur exploite en plus de la parcimonie la propriété de symétrie du VAC, lui permettant ainsi d'obtenir de meilleures performances. Ces deux détecteurs outre qu'ils sont aveugles sont plus performants que le détecteur non aveugle de [2] dans le cas d'un faible nombre d'échantillons. / The wireless communications systems continue to grow and has become very essential nowadays. This growth causes an increase in the demand of spectrum resources, which have become more and more scarce. To solve this problem of spectrum scarcity, Joseph Mitola III, in the year 2000, introduced the idea of dynamic spectrum allocation. Mitola defines the term “Cognitive Radio”, which is widely expected to be the next Big Bang in wireless communications [1]. In this work we focus on the problem of spectrum sensing which is the detection of the presence of primary users in licensed spectrum, in the context of cognitive radio. The objective of this work is to propose effective detection methods at low-complexity and/or using short observation time, using minimal a priori information about the signal to be detected. In the first part of this work we deal with the problem of detecting a random signal in noise. Two main methods of detection are used: energy detection or radiometer and cyclostationary detection. In our context, these methods are more complementary than competitive. We propose a hybrid architecture for detecting free bands, which combines the simplicity of the radiometer and the robustness of the cyclostationary detection. Two detection methods are proposed that are based on this same hybrid architecture. Thanks to the adaptive nature of the architecture, the complexity of the detector decreases over time to tend to the one of an energy detector with close performance to the cyclostationary detector or to the performance of a radiometer, depending on the used method and on the working environment. In the second part of this work we exploit the sparse property of the Cyclic Autocorrelation Function (CAF) to propose a new blind estimator based on compressed sensing that estimates the Cyclic Autocorrelation Vector (CAV) which is a particular vector of the CAF for a given lag. It is shown by simulation that this new estimator gives better performances than those obtained with the classical estimator, which is non-blind, under the same conditions and using the same number of samples. Using the new estimator, we propose two blind detectors that require fewer samples than the second order time domain detector of [2] which is based on the classical estimator of the CAF. The first detector uses only the sparse property of the CAV while the second detector exploits the symmetry property of the CAV in addition to its sparse property, resulting in better performances. Both detectors, although they are blind, are more efficient than the non-blind detector of [2] in the case of a small number of samples.
|
44 |
Déconvolution aveugle parcimonieuse en imagerie échographique avec un algorithme CLEAN adaptatifChira, Liviu Teodor 17 October 2013 (has links) (PDF)
L'imagerie médicale ultrasonore est une modalité en perpétuelle évolution et notamment en post-traitement où il s'agit d'améliorer la résolution et le contraste des images. Ces améliorations devraient alors aider le médecin à mieux distinguer les tissus examinés améliorant ainsi le diagnostic médical. Il existe déjà une large palette de techniques "hardware" et "software". Dans ce travail nous nous sommes focalisés sur la mise en oeuvre de techniques dites de "déconvolution aveugle", ces techniques temporelles utilisant l'enveloppe du signal comme information de base. Elles sont capables de reconstruire des images parcimonieuses, c'est-à-dire des images de diffuseurs dépourvues de bruit spéculaire. Les principales étapes de ce type de méthodes consistent en i) l'estimation aveugle de la fonction d'étalement du point (PSF), ii) l'estimation des diffuseurs en supposant l'environnement exploré parcimonieux et iii) la reconstruction d'images par reconvolution avec une PSF "idéale". La méthode proposée a été comparée avec des techniques faisant référence dans le domaine de l'imagerie médicale en utilisant des signaux synthétiques, des séquences ultrasonores réelles (1D) et images ultrasonores (2D) ayant des statistiques différentes. La méthode, qui offre un temps d'exécution très réduit par rapport aux techniques concurrentes, est adaptée pour les images présentant une quantité réduite ou moyenne des diffuseurs.
|
45 |
Fusion of Sparse Reconstruction Algorithms in Compressed SensingAmbat, Sooraj K January 2015 (has links) (PDF)
Compressed Sensing (CS) is a new paradigm in signal processing which exploits the sparse or compressible nature of the signal to significantly reduce the number of measurements, without compromising on the signal reconstruction quality. Recently, many algorithms have been reported in the literature for efficient sparse signal reconstruction. Nevertheless, it is well known that the performance of any sparse reconstruction algorithm depends on many parameters like number of measurements, dimension of the sparse signal, the level of sparsity, the measurement noise power, and the underlying statistical distribution of the non-zero elements of the signal. It has been observed that a satisfactory performance of the sparse reconstruction algorithm mandates certain requirement on these parameters, which is different for different algorithms. Many applications are unlikely to fulfil this requirement. For example, imaging speed is crucial in many Magnetic Resonance Imaging (MRI) applications. This restricts the number of measurements, which in turn affects the medical diagnosis using MRI. Hence, any strategy to improve the signal reconstruction in such adverse scenario is of substantial interest in CS.
Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in the aforementioned cases does not always imply a complete failure. That is, even in such adverse situations, a sparse reconstruction algorithm may provide partially correct information about the signal. In this thesis, we study this scenario and propose a novel fusion framework and an iterative framework which exploit the partial information available in the sparse signal estimate(s) to improve sparse signal reconstruction.
The proposed fusion framework employs multiple sparse reconstruction algorithms, independently, for signal reconstruction. We first propose a fusion algorithm viz. FACS which fuses the estimates of multiple participating algorithms in order to improve the sparse signal reconstruction. To alleviate the inherent drawbacks of FACS and further improve the sparse signal reconstruction, we propose another fusion algorithm called CoMACS and variants of CoMACS. For low latency applications, we propose a latency friendly fusion algorithm called pFACS. We also extend the fusion framework to the MMV problem and propose the extension of FACS called MMV-FACS. We theoretically analyse the proposed fusion algorithms and derive guarantees for performance improvement. We also show that the proposed fusion algorithms are robust against both signal and measurement perturbations. Further, we demonstrate the efficacy of the proposed algorithms via numerical experiments: (i) using sparse signals with different statistical distributions in noise-free and noisy scenarios, and (ii) using real-world ECG signals. The extensive numerical experiments show that, for a judicious choice of the participating algorithms, the proposed fusion algorithms result in a sparse signal estimate which is often better than the sparse signal estimate of the best participating algorithm.
The proposed fusion framework requires toemploy multiple sparse reconstruction algorithms for sparse signal reconstruction. We also propose an iterative framework and algorithm called {IFSRA to improve the performance of a given arbitrary sparse reconstruction algorithm. We theoretically analyse IFSRA and derive convergence guarantees under signal and measurement perturbations. Numerical experiments on synthetic and real-world data confirm the efficacy of IFSRA. The proposed fusion algorithms and IFSRA are general in nature and does not require any modification in the participating algorithm(s).
|
46 |
Časově-frekvenční analýza elektrogramů / Time-frequency analysis of electrogramsDoležal, Petr January 2015 (has links)
This thesis deals with time-frequency analysis of electrograms measured on isolated guinea pig hearts perfused according to Langendorff. Time-frequency analysis is based on algorithms Matching Pursuit and Wigner-Ville Distribution. The theoretical part describes the basics of electrocardiography, measurement on isolated hearts, the theory of approximation method Matching Pursuit and its combination with the Wigner-Ville distribution spectrum showing the energy density of the signal. Also other common approaches of time-frequency analysis are presented including the theory of continuous wavelet transform. The presented algorithms were tested on a set of electrograms, on which were induced ischemia within measurement followed by reperfusion. The proposed method allows for the fast detection of ischemia without any a priori knowledge of the signal, and also serves as a tool for measurement of EG important points and intervals. In the conclusion efficacy of the method was presented and its possible uses has been discussed.
|
Page generated in 0.0736 seconds