• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 12
  • 11
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of stress gradient enhanced piezoelectric composite unimorph actuators

Hopkinson, David P. 08 1900 (has links)
No description available.
12

High dielectric and conductive composites for electromagnetic crystals

Moulart, Alexandre Marc 08 1900 (has links)
No description available.
13

Surfacelet-based heterogeneous materials modeling

Huang, Wei 27 August 2014 (has links)
The application of heterogeneous materials has become common in modern product design such as composites and porous media. Computational design tools for such materials, with higher complexity than the traditional homogeneous ones, will be a critical component in the realization of the heterogeneity systematically. It is foreseen that computer-aided design (CAD) systems will include computer-aided materials design modules in future so that the design of functional materials and structures can be integrated for optimal product design. The traditional CAD systems model three-dimensional (3D) geometry at macro-scales with boundary representation (B-Rep), whereas computer-aided materials design is concerned with the specification of material composition at scales ranging from nano-, meso-, to micro-. Thus, multi-scale CAD systems are desirable for the integration of product and materials information. The existing B-Rep based modeling scheme needs to be extended to incorporate heterogeneous material compositions. The new modeling scheme should also support seamless zoom-in and zoom-out operations in multi-scale CAD systems. Recently, a multi-scale model, dual-Rep, was proposed to represent geometry and material property distribution implicitly. The core part of dual-Rep is a new basis function called surfacelet. Surfacelet is able to represent boundary information more efficiently than the traditional wavelets, while keeping a unified form with wavelets so that the role exchange of boundary and internal structures during zooming operations is enabled. A surfacelet transform is able to represent microstructure distributions in 3D images with surfacelet coefficients. In this dissertation, three enabling techniques for surfacelet-based heterogeneous materials modeling are developed. First, a method of inverse surfacelet transform is developed such that the original images can be reconstructed from the surfacelet coefficients. The surface integrals of voxel (i.e., volumetric pixel) values are obtained from the surfacelet coefficients using the one-dimensional inverse wavelet transform. The images are then reconstructed by solving linear equations from discretized surface integrals. The prior knowledge of material properties and distributions is applied to solve the under-constrained problems. Second, composite surfacelets with the combinations of different types of primitive surfacelets are created to increase the flexibility of the surfacelet transform with potentially fewer surfacelets and improved reconstruction accuracy. Third, a multi-scale materials modeling method is proposed to support interactive design and visualization of material microstructures at multiple levels of details. It has the capability to support seamless zoom-in and zoom-out. This method provides a feature-based design approach based on the surfacelet basis.
14

Design, synthesis and characterization of A-D-A structural porphyrin small molecules for bulk heterojunction organic solar cell applications

Chen, Song 10 November 2017 (has links)
Bulk heterojunction organic solar cells (BHJ OSCs) have been recognized as one of the most promising next generation green technology alternatives to inorganic solar cells because of the low-cost, lightweight, flexibility. Specifically, the use of small molecules instead of polymers as donors in BHJ OSC have been developed very fast recently because small molecules can be facilely synthesized and easily purified, and have a determined molecular structure without batch-to-batch variations. To date, those among the most efficient small molecules were constructed as acceptor-donor-acceptor (A-D-A) structural configuration from electron-rich units such as benzodithiophene (BDT), dithienosilole (DTS), oligothiophene units, and electron-deficient units such as benzothiadiazole (BT), diketopyrrolopyrrole (DPP), isoindigo (IID) and perylenediimide (PDI). Surprisingly, porphyrins were rarely studied either in polymers or π-conjugated small molecules as donor materials, though they have unique chemistry together with excellent photochemical and electrochemical properties, such as facile functionalization of the periphery and the variation of the central atom (metal ions), strong UV-visible absorption, ultrafast photoinduced charge separation in porphyrin-fullerene systems. In this research work, we design, synthesize and characterize new porphyrin-based small molecules with acceptor-donor-acceptor (A-D-A) configuration for bulk heterojunction organic solar cells, and investigate their structure-property relationships, specifically the effect of peripheral and backbone alkyl side-chains, π-conjugated linkers as well as electron-deficient ending units on the charge mobility, film morphology and solar cell performances. In Chapter 1, a general review on the historic and recent development of BHJ OSCs was given first, including the major components and working principle of OSC, the versatile organic semiconductors and their performances in OSCs. In chapter 2, six A-D-A structural porphyrin small molecules were designed and synthesized, in which different peripheral alkyl substitutions are attached to the meso-position of porphyrin core (CS-I, CS-II, CS-III, CS-4, CS-5 and CS-6), and 3-ethylrhodanine is used as terminal group. Their UV-visible absorption in solid, energy level, blend film morphology, charge mobility and cell performance are dependent on the different peripheral substitutions. The active layer consists of these six small molecules as donor materials and PC71BM as the acceptor material with an optimized film thickness. Although all six molecules show similar optical spectrum in solutions, the introduction of linear alkyl side chains can promote thin-film nanostructural order, especially shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to higher efficiency in this serial. Among them, the highest power conversion efficiency of 9.09% has been achieved by CS-4 based devices. In chapter 3, another two new A-D-A porphyrin small molecules (PTTR and PTTCNR) have been developed, which are similar in structure to CS-I, II and III, except that the linker is phenylethynyl in CS-I, II and III, whereas it is terthiophenylethynyl in PTTR and PTTCNR. The highest power conversion efficiency of 8.21% is achieved by PTTCNR, corresponding to a JSC of 14.30 mA cm−2, VOC of 0.82 V, and FF of 70.01%. The excellent device performances can be ascribed to the conjugated structure of porphyrin with 3,3''-dihexyl-terthiophene and the aliphatic 2-octylundecyl peripheral substitutions, which not only effectively increase the solar flux coverage between the conventional Soret and Q bands of porphyrin unit, but also optimize molecular packing through polymorphism associated with side-chain and the π-conjugated backbones, and form the blend films with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) characteristics of bi-continuous, interpenetrating networks required for efficient charge separation and transportation.;In chapter 4, we designed and synthesized a new dimeric porphyrin donor molecule (CS-DP) containing A-π2-D-π1-D-π2-A architecture by coupling of two zinc porphyrin cores through ethynyl linker. Interestingly, it can harvests the photons up to deep near-infrared (NIR) region in the absorption spectrum. From the past decades, it has been found that developing donor molecules with the absorption spectral in NIR region is a challenging key factor to get the high performance BHJ OSCs. Solar cell devices employing CS-DP as a donor exhibit a highest power conversion efficiency of 8.23%, corresponding to JSC = 15.14 mA cm-2, VOC = 0.781 mV and FF = 69.8% under AM 1.5G solar radiation. The high efficiency of this molecule is attributed to a panchromatic IPCE action spectrum from 300 nm to 1000 nm. Also, this performance is best for the reported deep NIR organic solar cells based on single small molecule and PC71BM system so far. We envision that this new small bandgap dimeric porphyrin is very promising to use in ternary and multi-junction applications as well as NIR photodetectors. In chapter 5, a series of new A-D-A structural porphyrin small molecules (CS-10, CS-11 and CS-12) have been prepared, that contain the same meso-thienyl-thioalkyl substituted porphyrin core and 3-ethylrhodanine ending unit, but varies with different numbers of phenylethynyl linker. Using them as donors for solution-processed organic solar cells, the device based on CS-10 featuring single phenyl ethynyl π-linker exhibits high power conversion efficiency (PCE) of 7.0%. The results indicate that meso-thienyl-thioalkyl substitution and controlled π-linker length is beneficial to tune the optoelectronic properties, film morphology and consequently performance of porphyrin-based BHJ OSCs. In chapter 6, two symmetrical tetra-meso-substituted porphyrin molecules (ZnP and CuP) have been prepared in gram-scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically, high hole mobility and very favorable energetics for hole extraction that render them attractive for implementation as new hole transporting materials in organometallic halide perovskite solar cells (PSCs). As expected, the use of ZnP as HTM in PSCs affords a competitive PCE of 17.78%, which is comparable to the most powerful HTM of Spiro-OMeTAD (18.59%) under the same working conditions. Meanwhile, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a relative lower PCE of 15.36%. Notably, the perovskite solar cells employing ZnP show longer stability than that of Spiro-OMeTAD. Moreover, the two porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable perovskite solar cells. To the best of our knowledge, this is the highest performance for porphyrin-based perovskite solar cells with PCE > 17%. The dissertation was completed with conclusions and outlooks in chapter 7.
15

Wool : from straw to gold : an ecological assessment of the lifecycle of wool from cradle to grave and beyond resulting in yarns composed of 100% post consumer waste

Farrer, Joan January 2000 (has links)
The objective of this research is to document the complex journey of wool from cradle to grave and beyond and to analyse the ethical and environmental cost of production from the farm to the knitwear factory, to retail and finally as post-consumer waste. The research findings make a contribution to the growing commercial and consumer in debate in this arcs. Under the spotlight is wool growing including genetic and chemical manipulation and environmental degradation. Human exploitation at manufacturing sites, in some of the poorest countries of the world is discussed. Finally, the involvement of government, charitable and commercial institutions in the business of textile waste disposal which currently takes the form of landfill, incineration and Third World dumping is highlighted. Experiments have been undertaken to produce a small range of knitwear yarns and garments composed of a blend of wool. cotton and polyester. regenerated from 100% post consumer waste originally in the form of wool garments, jeans and drinking bottles. This has involved an innovative collaboration with the local Authority, community groups, a national charity. a textile reclamation company, spinner and commercial knitter. The aim of the research both theoretical and practical is to demonstrate that there are practical ways to 'close the loop' and to flag up the need for design in the 21' Century to focus on post-consumer issues and the manufacture of aesthetic commercially viable products made from non-virgin materials.
16

Data-driven Methods in Mechanical Model Calibration and Prediction for Mesostructured Materials

Kim, Jee Yun 01 October 2018 (has links)
Mesoscale design involving control of material distribution pattern can create a statistically heterogeneous material system, which has shown increased adaptability to complex mechanical environments involving highly non-uniform stress fields. Advances in multi-material additive manufacturing can aid in this mesoscale design, providing voxel level control of material property. This vast freedom in design space also unlocks possibilities within optimization of the material distribution pattern. The optimization problem can be divided into a forward problem focusing on accurate predication and an inverse problem focusing on efficient search of the optimal design. In the forward problem, the physical behavior of the material can be modeled based on fundamental mechanics laws and simulated through finite element analysis (FEA). A major limitation in modeling is the unknown parameters in constitutive equations that describe the constituent materials; determining these parameters via conventional single material testing has been proven to be insufficient, which necessitates novel and effective approaches of calibration. A calibration framework based in Bayesian inference, which integrates data from simulations and physical experiments, has been applied to a study involving a mesostructured material fabricated by fused deposition modeling. Calibration results provide insights on what values these parameters converge to as well as which material parameters the model output has the largest dependence on while accounting for sources of uncertainty introduced during the modeling process. Additionally, this statistical formulation is able to provide quick predictions of the physical system by implementing a surrogate and discrepancy model. The surrogate model is meant to be a statistical representation of the simulation results, circumventing issues arising from computational load, while the discrepancy is aimed to account for the difference between the simulation output and physical experiments. In this thesis, this Bayesian calibration framework is applied to a material bending problem, where in-situ mechanical characterization data and FEA simulations based on constitutive modeling are combined to produce updated values of the unknown material parameters with uncertainty. / Master of Science / A material system obtained by applying a pattern of multiple materials has proven its adaptability to complex practical conditions. The layer by layer manufacturing process of additive manufacturing can allow for this type of design because of its control over where material can be deposited. This possibility then raises the question of how a multi-material system can be optimized in its design for a given application. In this research, we focus mainly on the problem of accurately predicting the response of the material when subjected to stimuli. Conventionally, simulations aided by finite element analysis (FEA) were relied upon for prediction, however it also presents many issues such as long run times and uncertainty in context-specific inputs of the simulation. We instead have adopted a framework using advanced statistical methodology able to combine both experimental and simulation data to significantly reduce run times as well as quantify the various uncertainties associated with running simulations.
17

A Robust Topological Preliminary Design Exploration Method with Materials Design Applications

Seepersad, Carolyn Conner 19 November 2004 (has links)
A paradigm shift is underway in which the classical materials selection approach in engineering design is being replaced by the design of material structure and processing paths on a hierarchy of length scales for specific multifunctional performance requirements. In this dissertation, the focus is on designing mesoscopic material and product topology?? geometric arrangement of solid phases and voids on length scales larger than microstructures but smaller than the characteristic dimensions of an overall product. Increasingly, manufacturing, rapid prototyping, and materials processing techniques facilitate tailoring topology with high levels of detail. Fully leveraging these capabilities requires not only computational models but also a systematic, efficient design method for exploring, refining, and evaluating product and material topology and other design parameters for targeted multifunctional performance that is robust with respect to potential manufacturing, design, and operating variations. In this dissertation, the Robust Topological Preliminary Design Exploration Method is presented for designing complex multi-scale products and materials by topologically and parametrically tailoring them for multifunctional performance that is superior to that of standard designs and less sensitive to variations. A comprehensive robust design method is established for topology design applications. It includes computational techniques, guidelines, and a multiobjective decision formulation for evaluating and minimizing the impact of topological and parametric variation on the performance of a preliminary topological design. A method is also established for multifunctional topology design, including thermal topology design techniques and multi-stage, distributed design methods for designing preliminary topologies with built-in flexibility for subsequent modification for enhanced performance in secondary functional domains. Key aspects of the approach are demonstrated by designing linear cellular alloys??ered metallic cellular materials with extended prismatic cells?? three applications. Heat exchangers are designed with increased heat dissipation and structural load bearing capabilities relative to conventional heat sinks for microprocessor applications. Cellular materials are designed with structural properties that are robust to dimensional and topological imperfections such as missing cell walls. Finally, combustor liners are designed to increase operating temperatures and efficiencies and reduce harmful emissions for next-generation turbine engines via active cooling and load bearing within topologically and parametrically customized cellular materials.
18

The role of distance education materials in addressing the professional development needs of high school English teachers in Rwanda.

Sibomana, Emmanuel 19 May 2015 (has links)
Distance education is being used increasingly for both pre and in-service teacher education in both developed and developing countries (Robinson & Latchem, 2003; Kwapong, 2007; Perraton, 2010). In Rwanda, the Kigali Institute of Education (KIE) introduced its first distance education programme in 2001 with the aim of upgrading the qualifications of under-qualified high school teachers, including those who teach English, using printed materials as the main teaching/learning resource. This study has aimed to investigate the role of the 2010 version of these materials in addressing the professional needs of high school English teachers. It was centrally informed by theories of the sociologist of education, Basil Bernstein (1996, 1999), about curriculum and of the sociocultural psychologist, Lev Vygotsky (1978), on mediation, by Shulman’s (1986, 1987) work on pedagogic content knowledge and by literature on English language teaching, on language teacher education and on distance education materials design. The investigation involved textual analysis of a selection of KIE’s distance education materials for English teaching and focused on the content selected for these materials and on the mediation of this content on the page. After this analysis, one section of these was re-designed by the researcher. Nine teacher-learners enrolled in the programme for English teaching were interviewed to determine their responses to both the KIE materials and to the redesigned section. The findings suggest that Kigali Institute of Education’s distance education materials for English do not adequately address the academic and professional needs of high school English teachers for four main reasons. Firstly, the content selected for the materials does not respond sufficiently to the interests and needs of foreign language teachers of English. Secondly, it is not externally aligned to the curriculum at the level that these teachers are supposed to teach. Thirdly, the mediation of this content does not adequately support the development of subject and pedagogic content knowledge and skills of teacher-learners and encourages surface rather than deep learning (Biggs, 1987). Lastly, with the exception of sections on some literary genres, the materials list useful ideas and language teaching approaches and methods but consistently fail to explain to the teacher-learners how to teach different aspects of language. These findings suggest that these materials do not adequately assist teacher-learners to develop pedagogic content knowledge (Shulman, 1987) for the teaching of English. The limitations identified may result from a lack of knowledge, skills and experience in distance education materials and graphic design among the KIE materials designing team and from inadequate resource provision (including time) by the institution and suggest that there is a need for changes to the KIE distance education materials designing process.
19

Investigating the take-up of open educational resources for maths teacher education : a case study in six higher education sites in South Africa.

Sapire, Ingrid M. 12 April 2011 (has links)
This study has investigated the take-up, at a range of South African tertiary institutions, of Open Educational Resources (OER) designed for mathematics teacher education. Although numerous studies (e.g. Darling-Hammond, 2006; Jonassen & Rohrer-Murphy, 1999; Loughran, 2006) have identified criteria for the development of quality materials for teacher education, and have investigated ways in which these have been and should be used, little attention has been paid to the implications of these findings for the use of OER in teacher education. In 2006 the South African Institute of Distance Education (SAIDE) initiated the ACEMaths project to pilot a collaborative materials design and adaptation process in response to a Department of Education call for large scale teacher upgrading programmes leading to an Advanced Certificate in Education (ACE) in priority areas. Nine South African tertiary institutions formed the collaborative group for the development of Mathematics teacher education materials. Six of these institutions committed to using the pilot materials in their teacher education programmes in 2007. Methodologically, the research is a case study of cases (Adler & Reed, 2002), in which the varying uses of the materials in these six institutional sites constituted the individual cases. At each site data were gathered from session observations, questionnaires and interviews. Artefacts, such as examples of customised materials, were also collected. Cross case analysis revealed that institutions used the ACEMaths materials in both similar and different ways and in a range of programmes. Findings from this analysis and their implications for both initial inter-institutional designing and subsequent intra-institutional re-designing and re-use of OER are discussed.
20

Characterization of Actuation and Fatigue Properties of Piezoelectric Composite Actuators

Webber, Kyle Grant 20 May 2005 (has links)
Epoxy composite laminated piezoelectric stress-enhanced actuators (ECLIPSE) have been developed for potential applications by the United States Air Force and others. This class of actuators offers several advantages over other unimorph actuators such as lighter weight, design flexibility, and short production time. Anisotropic differential thermal expansion is utilized in the design of the actuators to achieve large out-of-plane curvature and place the brittle piezoelectric ceramic in residual compression. The numerous composite material choices and configurations can be used to control characteristics of the actuator such as radius of curvature and force output. ECLIPSE actuators were characterized during this study. They were made from layers of Kevlar 49/epoxy composite and a lead zirconate titanate ceramic (PZT) plate. All ECLIPSE actuators tested were built with a PZT plate with the same dimensions and material, but had different layup configurations. By changing the stacking order of the composite and PZT material, characteristics of the actuator were altered. The performance of each ECLIPSE actuator was compared. The maximum achievable displacement of each actuator was measured by cyclically applying an electric field at low frequency between zero and the maximum electric field allowable for the piezoelectric material. The frequency was also increased to a resonance condition to characterize the fatigue behavior of these actuators. In addition, the force output of various actuators was measured with a four-point bending apparatus. The experimental data was compared to a classical lamination theory model and an extended classical lamination theory model. These models were used to predict actuator behavior as well as to calculate the stress and strain distribution through the thickness of the actuator.

Page generated in 0.3241 seconds