• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 152
  • 72
  • 18
  • 15
  • 12
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 594
  • 594
  • 81
  • 78
  • 74
  • 72
  • 50
  • 43
  • 39
  • 38
  • 36
  • 34
  • 33
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Advanced Biofilm and Aerobic Granulation Technologies for Water and Wastewater Treatment

Sun, Yewei 10 April 2020 (has links)
Attached growth biological processes offer advantages over traditional water purification technologies through high biomass retention, easy sludge-water separation, multiple multispecies synergies in proximity, resilience to shock loading, low space requirements, and reactor operational flexibility. Traditionally, attached growth refers to biofilms that require abiotic carrying media for bacteria to attach and grow on. While biofilms have been broadly applied in wastewater treatment, its potential for potable reuse or stormwater treatment has not been well studied. The treatment trains of pre-ozonation followed by biologically active filtration (ozone- BAF) is an advanced biofilm technology for potable reuse that can generate high-quality potable water at reduced energy and chemical demands by removing pollutant through three different pathways: oxidation, adsorption, and biodegradation. However, these pathways can result in both desirable and undesirable effects, and the mechanism behind it is still unclear. To understand the mechanisms of various pollutant removal, parallel performance comparisons of ozone-BAF treatment trains with spent and regenerated granular activated carbon (GAC), along with a range of pre-oxidant ozone doses were performed. Another common issue of BAF is the headloss buildup during its operation, which has become a significant energy and maintenance burden at many utilities. Thus, a mathematical model was developed to predict BAF headloss buildup in response to organic removal and nitrification. For stormwater treatment, the feasibility of using biofilms for stormwater biological nitrogen removal (BNR) is still largely unknown, as very limited research effort has been dedicated to this aspect. Thus, a mathematical model was developed to evaluate the potential of using BNR techniques for stormwater nitrogen removal. Aerobic granules are an even more advanced attached growth process, which eliminates the need for abiotic carrying media. So far, aerobic granular sludge is only formed in sequential batch reactors but not in a continuous flow system. Therefore, continuous flow aerobic granulation from traditional activated sludge was investigated and, for the first time, successfully achieved in continuous flow plug-flow bioreactors fed with real municipal wastewater. Besides, the role and critical value of an essential operational parameter, feast/famine ratio, for continuous flow aerobic granulation were determined. / Doctor of Philosophy / Water scarcity and increasing water demand caused by urban population growth and climate change is a reality throughout the world. Thus, process intensification of the current water and wastewater technologies is gaining increasing attention globally. Comparing to traditional water purification technologies, attached growth biological processes offers advantages such as high biomass retention, easy sludge-water separation, multiple multispecies synergies in proximity, resilience to shock loading, small footprint requirement, and reactor operational flexibility. Traditionally, attached growth refers to biofilms that require abiotic carrying media for bacteria to attach and grow on. While biofilms have been broadly applied in wastewater treatment, its potential for potable reuse or stormwater treatment has not been well studied. For potable reuse, the treatment trains of pre-ozonation followed by biologically active filtration (ozone-BAF) is an advanced biofilm technology that can generate high-quality potable water at reduced energy and chemical demands by removing pollutant through different pathways. However, the mechanism behind it is still unclear. To understand the mechanisms of various pollutant removal, parallel performance comparisons of ozone-BAF treatment trains operated with different operational conditions were performed in this dissertation. Another common issue of BAF is the headloss buildup during its operation, which has become a significant energy and maintenance burden at many utilities. Thus, a mathematical model was developed to predict the headloss buildup during BAF operation. For stormwater treatment, the feasibility of using biofilms for stormwater biological nitrogen removal (BNR) is still largely unknown, as very limited research effort has been dedicated to this aspect. Thus, a mathematical model was developed to evaluate the potential of using BNR technique for stormwater. Aerobic granules are an even more advanced attached growth process. However, aerobic granular sludge is so far only formed in sequential batch reactors which are incompatible with the continuous flow nature of most wastewater treatment plants. Therefore, aerobic granulation from traditional activated sludge was investigated and, for the first time, successfully achieved in continuous flow plug-flow bioreactors fed with real municipal wastewater. Besides, the role of an essential operational parameter, feast/famine ratio, for continuous flow aerobic granulation was determined.
262

Characterization and Modeling of Atrioventricular Conduction during Atrial Fibrillation

Martínez Climent, Batiste Andreu 03 June 2011 (has links)
La fibrilación auricular (FA) es una de las arritmias cardiacas más comunes, la cual afecta alrededor del 10% de la población de más de 70 años. En FA, los impulsos eléctricos auriculares generados por el nodo sinusal son sustituidos por impulsos eléctricos desorganizados. Esto esta asociado con un bombardeo irregular de activaciones auriculares hacia el nodo AV. Dado que el nodo AV no puede conducir todas estas activaciones, algunas de ellas son bloqueadas en el nodo. Esta propiedad de filtrado que tiene el nodo es fundamental para mantener el ritmo cardiaco en un rango compatible con la vida. Sin embargo, la respuesta ventricular durante FA presenta intervalos RR (tiempo entre dos activaciones) más cortos e irregulares que durante ritmo sinusal. Al ser el nodo AV la única estructura responsable para la conducción de los latidos auriculares hacia los ventrículos, las estrategias terapéuticas para controlar el ritmo cardiaco durante FA tratan de utilizar y ajustar las propiedades de conducción del nodo. Sin embargo, sigue sin estar suficientemente entendido el papel que dichas propiedades de conducción juegan para controlar y modular la respuesta ventricular durante FA. Durante el desarrollo de la presente tesis se han investigado en diferentes especies y con diversas técnicas algunas de las principales características de la conducción del nodo AV con la intención de aportar mayor conocimiento sobre esta intrigante estructura del corazón. Específicamente, se ha analizado uno de los fenómenos más enigmáticos de la respuesta ventricular durante FA: la aparición de patrones de respuesta ventricular multimodales al construir histogramas de RR obtenidos a partir de registros de larga duración. En la literatura se han sugerido diversas teorías que pudiesen explicar la aparición de estos múltiples intervalos RR predominantes. En el desarrollo de la presente disertación se mostrarán algunos resultados incompatibles con dichas teorías, razón por la cual se presenta y defiende una nueva hipótesis que sugiere que los intervalos RR predominantes están relacionados con el proceso fibrilatorio auricular. / Martínez Climent, BA. (2011). Characterization and Modeling of Atrioventricular Conduction during Atrial Fibrillation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10985
263

Development and Validation of N-nitrosamine Rejection Mathematical Model Using a Spiral-wound Reverse Osmosis Process

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal January 2016 (has links)
Yes / In this paper, a one-dimensional mathematical model based on coupled differential and algebraic equations has been developed for analysing the separation mechanism of a N-nitrosamine in a spiral-wound reverse osmosis process. The model is based on Spiegler and Kedem’s work on mass transport and Darcy’s law and concentration polarization to analyse the pressure drop and mass transfer coefficient in the module feed channel respectively. The model is built using the gPROMS software suite and validated using N-nitrosamine rejection experimental data from the literature, obtained by using a pilot-scale cross-flow reverse osmosis filtration system. Analysis results derived from the model corroborate experimental data.
264

Optimal Design of a Trickle Bed Reactor for Light Fuel Oxidative Desulfurization based on Experiments and Modelling

Nawaf, A.T., Gheni, S.A., Jarullah, Aysar Talib, Mujtaba, Iqbal 26 April 2015 (has links)
Yes / In this work, the performance of oxidative desulfurization (ODS) of dibenzothiophene (DBT) in light gas oil (LGO) is evaluated with a homemade manganese oxide (MnO2/γ-Al2O3) catalyst. The catalyst is prepared by Incipient Wetness Impregnation (IWI) method with air under moderate operating conditions. The effect of different reaction parameters such as reaction temperature, liquid hour space velocity and initial concentration of DBT are also investigated experimentally. Developing a detailed and a validated trickle bed reactor (TBR) process model that can be employed for design and optimization of the ODS process, it is important to develop kinetic models for the relevant reactions with high accuracy. Best kinetic model for the ODS process taking into account hydrodynamic factors (mainly, catalyst effectiveness factor, catalyst wetting efficiency and internal diffusion) and the physical properties affecting the oxidation process is developed utilizing data from pilot plant experiments. An optimization technique based upon the minimization of the sum of the squared error between the experimental and predicted composition of oxidation process is used to determine the best parameters of the kinetic models. The predicted product conversion showed very good agreement with the experimental data for a wide range of the operating condition with absolute average errors less than 5%.
265

Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modeling

Jarullah, A.T., Muhammed, S.K., Al-Tabbakh, B.A., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / In this paper, oxidative desulfurization (ODS) process is studied for the purpose of removing the sulfur components from light gas oil (LGO) via experimentation and process modeling. A recently developed (by the authors) copper and nickel oxide based composite nano-catalyst is used in the process. The ODS experiments are conducted in a batch reactor and air is used as an oxidizer under moderate operation conditions. Determination of the kinetic parameters with high accuracy is necessary of the related chemical reactions to develop a helpful model for the ODS operation giving a perfect design of the reactor and process with high confidence. High conversion of 92% LGO was obtained under a reaction temperature of 413 K and reaction time of 90 min for synthesized Cu Ni /HY nano-catalyst. Here model based optimization technique incorporating experimental data is used to estimate such parameters. Two approaches (linear and non-linear) are utilized to estimate the best kinematic parameters with an absolute error of less than 5% between the predicted and the experimental results. An environmentally friendly fuel is regarded the main goal of this study, therefore the optimization process is then employed utilizing the validated model of the prepared composite nano-catalyst to get the optimal operating conditions achieving maximum conversion of such process. The results show that the process is effective in removing more than 99% of the sulfur from the LGO resulting in a cleaner fuel.
266

Performance evaluation for process refinement stage of SWA system

Shurrab, O., Awan, Irfan U. January 2015 (has links)
No / Abstract: In periodic manner the analysts teams are in the process of designing, updating and verifying the situational awareness SWA system. Initially, at the designing stage the risk assessment model has little information about the dynamic environment. Hence, any missing information can directly impact the situational assessment capabilities. With this in mind, researchers relied on various performance metrics in order to verify how well they were doing in assessing different situations. In fact, before measuring the ranking capabilities of the SWA system, the underlying performance metrics should be examined against its intended purpose. In this paper, we have conducted quality based evaluations for the performance metrics, namely "The Ranking Capability Score". The results obtained showed that the proposed performance metrics have scaled well over a number of scenarios. Indeed, from the data fusion perspectives the underlying metrics have adequately satisfied different SWA system needs and configurations.
267

Comparison of the 2022 Monkeypox (Mpox) Outbreak Using Mathematical Modeling and Time Series Clustering

Tamakloe, Mark-Daniels 01 August 2023 (has links) (PDF)
Monkeypox virus (MPXV) is the causative agent of monkeypox (mpox), a rare viral disease that affects humans [1]. It is primarily found in Africa and is transmitted to humans through contact with sick animals, particularly rodents and monkeys, or through human-to-human transmission [2]. From the beginning of May 2022, cases of mpox have been recorded from non-endemic nations, and the illness has continued to be reported in other endemic nations. Majority of confirmed cases have been recorded in Europe and North America. In this thesis, we compare the spread of the outbreak across the top ten countries using a combination of two different techniques. First, we look at the similarity of the outbreak from a mathematical modeling point of view using a simple SIR model to describe the dynamics of the spread and compare parameters of the model among most prevalent countries. Using the model as the general trend of the outbreak, we then look at the spread from a clustering perspective, grouping countries based on a time-series clustering technique.
268

Matematické modely transformátorů a asynchronních motorů / Mathematical models of the transformers and asynchronous machines

Cipín, Radoslav January 2008 (has links)
The fist part of this work is dealt with the construction of the mathematical models of voltage and current transformers. There are created and simulated models of voltage and current transformer with the nonlinear magnetization characteristics. The second part of this work is dealt with equivalent circuit of the induction motor in the form of Gamma-circuit. The speed-torque characteristic and the dependence of stator current on the slip are calculated from this equivalent circuit. The third part of this work is dealt with electromagnetic design of the alternating current machines by the help of a classic way and a new way.
269

Mathematical Modelling of Cancer Cell Population Dynamics

Daukste, Liene January 2012 (has links)
Mathematical models, that depict the dynamics of a cancer cell population growing out of the human body (in vitro) in unconstrained microenvironment conditions, are considered in this thesis. Cancer cells in vitro grow and divide much faster than cancer cells in the human body, therefore, the effects of various cancer treatments applied to them can be identified much faster. These cell populations, when not exposed to any cancer treatment, exhibit exponential growth that we refer to as the balanced exponential growth (BEG) state. This observation has led to several effective methods of estimating parameters that thereafter are not required to be determined experimentally. We present derivation of the age-structured model and its theoretical analysis of the existence of the solution. Furthermore, we have obtained the condition for BEG existence using the Perron-Frobenius theorem. A mathematical description of the cell-cycle control is shown for one-compartment and two-compartment populations, where a compartment refers to a cell population consisting of cells that exhibit similar kinetic properties. We have incorporated into our mathematical model the required growing/aging times in each phase of the cell cycle for the biological viability. Moreover, we have derived analytical formulae for vital parameters in cancer research, such as population doubling time, the average cell-cycle age, and the average removal age from all phases, which we argue is the average cell-cycle time of the population. An estimate of the average cell-cycle time is of a particular interest for biologists and clinicians, and for patient survival prognoses as it is considered that short cell-cycle times correlate with poor survival prognoses for patients. Applications of our mathematical model to experimental data have been shown. First, we have derived algebraic expressions to determine the population doubling time from single experimental observation as an alternative to empirically constructed growth curve. This result is applicable to various types of cancer cell lines. One option to extend this model would be to derive the cell cycle time from a single experimental measurement. Second, we have applied our mathematical model to interpret and derive dynamic-depicting parameters of five melanoma cell lines exposed to radiotherapy. The mathematical result suggests there are shortcomings in the experimental methods and provides an insight into the cancer cell population dynamics during post radiotherapy. Finally, a mathematical model depicting a theoretical cancer cell population that comprises two sub-populations with different kinetic properties is presented to describe the transition of a primary culture to a cell line cell population.
270

Tiesiaeigio žingsninio variklio srovių tyrimas / Research of Linear Stepper Motor Currents

Rudinskas, Andrius 25 June 2009 (has links)
Baigiamajame magistro darbe tiriamos tiesiaeigio žingsninio variklio srovės. Atkreiptas dėmesys į srovės pereinamuosius procesus, nusistovėjusias vertes ir srovės priklausomybę nuo judamo elemento padėties. . Sudarytas variklio matematinis modelis įvertinus induktyvumo pokytį slenkamam elementui judant. Surasta srovės kitimo funkcija ir pagal ją nubraižytos srovės pereinamojo proceso charakteristikos. Išnagrinėjus srovės teorinius ir praktinius aspektus, pateikiamos baigiamojo darbo išvados ir siūlymai. / The practical part includes the current experiment and mathematical model of linear stepper motor. In this part was explored the inductance. The mathematical model was made for the linear stepper motor where includes the variable inductance. This model was resolved with MathCad 2001 software. In the research of current theoretical and practical aspects was made the conclusions and suggestions.

Page generated in 1.4436 seconds