141 |
Técnicas de programação matemática para a análise e projeto de sistemas biotecnológicos. / Mathematical programming techniques for analysis and design of biotechnological systems.Martínez Ríascos, Carlos Arturo 02 September 2005 (has links)
A complexidade de alguns sistemas biotecnológicos impossibilita seu estudo sem o uso de técnicas de programação matemática avançadas. A quantificação de fluxos metabólicos e a síntese e projeto ótimos de plantas multiproduto são problemas com esta característica, abordados na presente tese. A quantificação de fluxos metabólicos empregando balanços de marcações é representada como um problema de otimização não-linear, o qual se resolve através da minimização da diferença entre as medidas experimentais e as predições do modelo da rede metabólica. Este problema surge da necessidade de se caracterizar o metabolismo mediante a estimação das velocidades das reações bioquímicas. O modelo matemático para problemas deste tipo é composto basicamente por balanços de metabólitos e de isótopos; os primeiros são lineares, enquanto os segundos introduzem não-linearidades ao problema e, neste trabalho, são modelados mediante uma modificação da técnica de matrizes de mapeamento de átomos. Para quantificar os fluxos metabólicos considerando a existência de ótimos locais, desenvolveu-se um algoritmo branch & bound espacial, no qual a busca global é feita mediante a divisão da região de busca (branching) e a geração de seqüências de limites (bounding) que convergem para a solução global. Como estudo de caso, estimaram-se os fluxos no metabolismo central de Saccharomyces cerevisiae. Os resultados confirmam a existência de soluções locais e a necessidade de desenvolver uma estratégia de busca global; a solução global obtida apresenta semelhanças, nos fluxos centrais, com a melhor solução obtida por um algoritmo evolucionário. Quanto aos problemas de síntese e projeto de sistemas biotecnológicos multiproduto, As abordagens mais empregadas para resolve-los são a definição e dimensionamento seqüencial das operações unitárias, e a fixação dos parâmetros de dimensionamento e de estimação do tempo de operação (com valores obtidos em laboratório ou planta piloto); porém ambas abordagens fornecem soluções subótimas. Por outro lado, a solução simultânea da síntese e projeto de sistemas biotecnológicos multiproduto gera modelos misto-inteiros não-lineares (MINLP) de grande porte, devido à combinação das decisões, ligadas à existência de alternativas no processo, com as restrições não-lineares geradas dos modelos das operações. Como estudo de caso considera-se uma planta para produção de insulina, vacina para hepatite B, ativador de plasminogênio tecidual (tissue plasminogen activator) e superóxido dismutase, mediante três hospedeiros diferentes: levedura (S. cerevisiae) com expressão extra ou intracelular, Escherichia coli e células de mamíferos. O projeto deve satisfazer a meta de produção para cada produto, minimizando os custos de capital e selecionando os hospedeiros, as operações e o arranjo dos equipamentos em cada estágio. Os resultados obtidos mostram que a formulação das decisões por abordagem big-M permite resolver o modelo MINLP gerado e que a consideração de múltiplos produtos com seqüências e condições de processamento diferentes gera grande ociosidade nos equipamentos e aumenta o custo total do projeto. Para o estudo de caso observou-se que a alocação de tanques intermediários tem um efeito limitado na diminuição do custo do projeto, porém a implementação simultânea da flexibilização do scheduling, do projeto de equipamentos auxiliares e tanques intermediários permite obter projetos satisfatórios. / The complexity of biotechnological systems does not allow their study without the use of advanced mathematical programming techniques. Metabolic flux quantification and optimal synthesis and design of multiproduct plants are problems with this characteristic, and are addressed in this thesis. The metabolic flux quantification employing labeling balances is formulated as a nonlinear optimization problem that is solved by the minimization of the difference between experimental measurements and predictions of the metabolic network model. This problem is generated by the necessity of estimating the rates of biochemical reactions that characterize the metabolism. The mathematical model for this class of problems is composed by balances of metabolites and isotopes; the former are linear whereas the latter are nonlinear and, in this work, are modeled by a modification of the atom mapping matrix technique. A spatial branch & bound algorithm was developed to quantify the metabolic fluxes, that considers the existence of local optima; in this algorithm, the global search is developed by the division of the searching region (branching) and the generation of sequences of bounds (bounding) that converge to the global solution. As a case study, fluxes in central metabolism of Saccharomyces cerevisiae were estimated. The results confirm the existence of local solutions and the necessity of develop a global search strategy; the central fluxes in the obtained global solution are similar to those ones obtained by an evolutionary algorithm. To solve problems of synthesis and design of multiproduct biotechnological systems, the most employed approaches are the sequential selection and sizing of the unit operations, and the fixing of sizing and time parameters (employing values from laboratory or pilot plants); nevertheless, both approaches generate suboptimal solutions. On the other hand, the simultaneous solution of the synthesis and design of multiproduct biotechnological systems generates large size mixed-integer nonlinear models (MINLP), due to the combination of options into the processing with nonlinear constraints from the operation models. As case study, a plant for production of insulin, hepatitis B vaccine, tissue plasminogen activator and superoxide dismutase was considered, by three hosts: yeast (S. cerevisiae) with extra or intracellular expression, Escherichia coli and mammalian cells. The design must satisfy the production target for each product, minimizing the capital cost and considering the selection of hosts, the operations and the number of parallel units in each stage. The obtained results show that the formulation of decisions by the big-M approach allows the solution of the generated MINLP model and that consideration of several products with different processing sequences and conditions generates large idleness at the equipment and increases the total cost of the design. In the case study it was observed that the allocation of storage tanks has a limited effect on cost reduction, but the simultaneous implementation of flexible scheduling, design of auxiliary equipments and intermediate storage tanks allow the generation of satisfactory designs.
|
142 |
Modelos matemáticos para otimização da confiabilidade de sistemas elétricos de distribuição com geração distribuídaFerreira, Gustavo Dorneles January 2013 (has links)
sensíveis têm requerido elevados níveis de confiabilidade dos sistemas de distribuição de energia. Em meio a este cenário, a proliferação de geradores distribuídos conectados próximos às cargas evidencia o surgimento de um novo paradigma na produção e utilização da energia elétrica. No entanto, muitos problemas decorrem do fato de que os sistemas de distribuição não foram projetados para incorporar unidades geradoras de energia. A estratégia completa de controle e proteção é definida sob o pressuposto do fluxo unidirecional de potência nos alimentadores. Um dos conflitos mais imediatos que surgem com a penetração da geração distribuída é relacionado ao sistema de proteção, resultado da alteração na magnitude das correntes de falta. Algumas consequências são a perda da sensibilidade e da coordenação da proteção. Se contornados estes problemas, a geração distribuída tem potencial para exercer impacto positivo sobre a confiabilidade, em especial no suporte ao restabelecimento da carga em situações de contingência. Tendo em vista estes fatores, a metodologia proposta adota uma perspectiva multicriterial para otimizar o desempenho dos sistemas de distribuição na presença da geração distribuída. Os indicadores SAIDI, SAIFI e MAIFI são formulados como modelos de otimização que possibilitam a adequação do sistema de proteção às condições operacionais impostas pela geração distribuída. Dentre os aspectos considerados incluem-se a alocação, a seletividade e a coordenação dos dispositivos de proteção. A alocação de chaves de manobras para reconfiguração do alimentador é a estratégia adotada para maximizar o efeito positivo da geração distribuída sobre a confiabilidade. As soluções dos modelos definem os locais de instalação dos dispositivos de proteção e manobras, e os ajustes dos religadores de forma independente para as unidades de fase e terra. A minimização simultânea dos indicadores é formulada como um problema de Programação Linear Inteira Mista por Metas, visando o balanço ótimo entre a redução das interrupções momentâneas e sustentadas nos sistemas de distribuição. Os modelos analíticos dos indicadores são solucionados utilizando um pacote de otimização de uso geral, baseado no método de Branch-and-Bound. A metodologia é avaliada a partir de um estudo de caso, considerando níveis crescentes de penetração da geração distribuída em um alimentador de distribuição real. Os modelos matemáticos são aplicados em cenários distintos de operação do sistema, associados à diferentes restrições econômicas. Os resultados possibilitam a avaliação do impacto da geração distribuída no restabelecimento e na proteção do sistema de forma independente. / The increasing automation of industrial processes and the sensitivity of electronic loads have required high levels of power distribution system’s reliability. In this scenario, the widespread use of distributed generators connected near the loads shows the emergence of a new paradigm in electric energy production and application. However, many problems arise from the fact that the distribution systems were not designed to deal with power generating units. The complete control and protection strategy is defined under the assumption of radial power flow. One of the most immediate conflicts that arise with the penetration of distributed generation is related to the protection system, a result of the change in fault currents magnitude. Some consequences are loss of protection coordination and sensitivity. By addressing these problems, distributed generation has the potential to have a positive impact on distribution reliability, especially in supporting load restoration during system’s contingencies. Considering these factors, the proposed methodology uses a multi-criteria approach to optimize the overall performance of distribution systems in the presence of distributed generation. The reliability indices SAIDI, SAIFI and MAIFI are formulated as optimization models that allow adequacy of the protection system in relation to the operating conditions imposed by distributed generation. The aspects considered include the allocation, selectivity and coordination of protective devices. The allocation of sectionalizing switches for feeder restoration is the strategy to maximize the positive impact of distributed generation on the system reliability. The model solutions provide the protective devices and switches locations, as well as reclosers’ settings for phase and ground units, independently. Reliability indices minimization is formulated as a Mixed Integer Linear Goal Programming problem, in order to establish the optimal trade-off between reducing momentary and sustained interruptions in distribution systems. The analytical models are solved using a general-use optimization package based on the Branch-and-Bound method. The methodology is evaluated through a case study considering increasing levels of distributed generation penetration on a real distribution feeder. The proposed mathematical models are applied in different scenarios of system operation and under different economic constraints. The results allow the evaluation of the impact of distributed generation on restoration and protection of the test system.
|
143 |
Contribution à l'optimisation du chargement et du déchargement des conteneurs dans le cas des transports routier et fluvial / Contribution to the optimization of loading and unloading og containers in the case of road and river transportEl Yaagoubi, Amina 19 January 2019 (has links)
Dans ce mémoire, nous nous intéressons à l’optimisation des mouvements improductifs de chargement/déchargement, appelés shiftings, dans les problèmes de transport. Dans le premier contexte,nous introduisons le problème de shifting dans le cas du voyageur de commerce. Notre objectif est de chercher un circuit hamiltonien qui optimise à la fois le coût distance et le coût shifting. Nous proposons une modélisation mathématique du problème, puis, nous adaptons la métaheuristique d’optimisation par colonies de fourmis sous sa forme séquentielle et parallèle pour le résoudre. Dans le deuxième contexte, nous abordons le problème d’optimisation des plans de chargement et d’arrimage des conteneurs dans des barges. Ce problème consiste à chercher l’emplacement le plus convenable de chaque conteneur dans les barges de façon à faciliter son déchargement dans la chronologie des ports à visiter. D'abord, nous introduisons une modélisation mathématique du problème dans le cas d’une seule barge ou différents ports du trajet ont des coûts shiftings non-uniformes. L’objectif est d’optimiser le coût total de shiftings, la stabilitélongitudinale de la barge et celle transversale. Ensuite, nous généralisons le problème au cas d’un système de convoi de barges. Nous proposons, d’abord, un modèle mathématique en nombres entiers, dans lequel, nous considérons l’aspect multi-objectif en optimisant le nombre de shiftings, la stabilité du convoi et le nombre de barges utilisées dans le convoi. Puis, nous adaptons la méthode nsga-II en se basant sur les heuristiques du problème de bin-packing.L'ensemble des résultats obtenus est évalué en utilisant des mesures de performances adaptées au problème. / This work outlines the optimization of unproductive loading/unloading movements, called shiftings, in transport problems. in the first context, we introduce the shifting in the case of the traveling salesman problem. our goal is to find a hamiltonian circuit that optimizes both distance and shifting costs. we propose a mathematical modeling of the problem, and then we adapt the ant colony optimization metaheuristic in its sequential and parallel form to solve it. in the second context, we address the 3d container stowage planning problem of barges. this problem consists in finding the most suitable location of each container in the barge in order to facilitate its retrieval in the chronology of ports to be visited. firstly, we introduce a mathematical modeling of the problem in the case of a single barge where different ports are of non-uniform operational costs. the main objective is to optimize the total shiftings fees, the longitudinal stability of the barge and the transverse one. then, we generalize our problem to the case of barge convoy systems. we first propose a suitable mathematical modeling, in which, we consider the multi-objective aspect by optimizing the total number of shiftings, the convoy stability and the number of the real-used barges in the convoy. in order to solve this new variant, we propose a novel adaptation of the multi-objective evolutionary algorithm nsga-ii (non-dominated sorting genetic algorithm-ii) based on a set of heuristics introduced by the bin-packing problem resolution methods. the numerical results are evaluated using performance measures adapted to theproblem.
|
144 |
Decisão de mix de produtos sob a perspectiva do custeio baseado em atividades e tempo para operações com múltiplas restrições. / Product-mix decision under the perspective of the time-driven activity-based costing for multi-constrained.Saraiva Junior, Abraão Freires 12 February 2015 (has links)
Esta pesquisa versa sobre o tema decisão de mix de produtos que, em uma visão de Engenharia de Produção, pode ser entendido como a definição da quantidade ideal a ser produzida de cada tipo de produto em um determinado período, considerando que estes competem por um número limitado de recursos, de forma a maximizar o resultado econômico (ex: lucro operacional) da empresa. Os modelos de decisão de mix produtos utilizam informações sobre lucratividade que é determinada a partir de análises e confrontos entre os preços de vendas e os custos (gastos) dos produtos, custos esses que são mensurados através de métodos de custeio. Dentre os métodos de custeio existentes na literatura, destacam-se o Custeio por Absorção, o Custeio Direto/Variável, o Custeio Baseado em Atividades (ABC) e o Custeio Baseado em Atividades e Tempo (TDABC). O TDABC, a despeito de ter sido lançado na literatura em 2004 e detalhado em 2007 a partir de um livro publicado por Robert Kaplan e Steven Anderson, ainda não foi explorado diretamente pela literatura que versa sobre decisão de mix de produtos no contexto de operações com múltiplas restrições, ao contrário de alguns dos outros métodos de custeio mencionados, tal como o ABC. Para preencher essa lacuna teórica, esta tese tem como objetivo propor um modelo de decisão de mix de produtos sob a perspectiva do custeio baseado em atividades e tempo para operações com múltiplas restrições. Para cumprir este objetivo, inicialmente, a tese é desenvolvida metodologicamente com a realização de uma análise bibliométrica e de uma análise de citações das publicações realizadas em periódicos acadêmicos internacionais das áreas de Engenharia de Produção e de Contabilidade Gerencial sobre decisão de mix de produtos e sobre o TDABC. Em seguida, uma pesquisa bibliográfica é apresentada para discutir conceitos, analisar criticamente e posicionar a pesquisa sobre decisão de mix de produtos e sobre métodos de custeio, com destaque ao TDABC. Ainda, são apresentados exemplos didáticos para ilustrar a utilização de métodos de custeio na decisão de mix de produtos. Em seguida, utiliza-se de modelagem quantitativa com vistas à proposição do modelo para auxiliar a decisão de mix de produtos sob a perspectiva do TDABC, sendo este expresso na forma de um modelo de programação linear. No modelo proposto, são incorporados técnicas e conceitos relacionados com o controle gerencial de gastos, com a hierarquia de atividades, com o Overall Equipment Effectiveness (OEE) e com a programação matemática. Através de um exemplo didático envolvendo uma empresa de manufatura com múltiplas restrições do tipo hard e considerando parâmetros determinísticos, é apresentada a aplicação do modelo proposto na decisão de mix de produtos. Como principal resultado, tem-se a operacionalização do modelo proposto através do aplicativo Solver® incorporado ao software Microsoft Office Excel®, culminando na definição do mix de produtos que maximiza o lucro operacional esperado para a empresa no horizonte de planejamento analisado. Algumas reflexões críticas são realizadas no que tange aos limites de aplicação do modelo proposto. Finalmente, conclui-se que, sob a perspectiva do TDABC, o modelo proposto pode ser útil para auxiliar a decisão de mix de produtos no contexto de operações com múltiplas restrições. / This research addresses the theme \"product-mix decision\" that, in a Production Engineering perspective, can be understood as the definition of the optimum quantity to be produced for each type of product in a given period, considering these products compete for limited resources in order to maximize the firm economic result (e.g. operating income). Product-mix decision models use information on profitability, which is determined from analysis and confrontation between sales prices and costs (spending) of the products supplied by the company. These products costs are measured by costing methods. Among the existing costing methods in the literature, absorption costing, the direct costing, the activity based costing (abc) and time-driven activity-based costing (TDABC) are highlighted. TDABC, despite appearing in the literature in 2004 and detailed in 2007 from a book written by Robert Kaplan and Steven Anderson, has not been directly explored in the literature that deals with the product-mix decision considering multi-constrained operations context, unlike some of the other costing methods mentioned. In this context, to fill in this theoretical gap, the PhD thesis aims to propose a quantitative model to underpin the product-mix decision under the perspective of TDABC for multi-constrained operations. To meet this goal, initially, the thesis is developed methodologically from a bibliometric analysis and a citation analysis of papers on product mix decision and on TDABC published by international academic journals related to Production Engineering and Management Accounting research areas. Then the manuscript is methodologically developed from a literature research to discuss concepts and positioning the research on product-mix decision and on costing methods, emphasizing TDABC. Finally, quantitative modeling is employed in order to propose a model under the perspective of TDABC to assist product-mix decision, which is expressed as a linear programming model. The proposed model incorporates techniques and concepts related to management control over costs, the hierarchy of activities taxonomy, the Overall Equipment Effectiveness (OEE) and mathematical programming. An application of the proposed model is illustrated from a didactic example involving a multi-constrained manufacturing operation and considering deterministic parameters. The proposed model is operationalized through the Solver® and the Microsoft Office Excel® softwares, and, as main results, it was calculated the product-mix that maximizes the company\'s operating profit expected for the analyzed planning horizon. Some critical reflections are made regarding the proposed model application. Finally, it is concluded that, under the perspective of TDABC, the proposed model can be useful to support the product-mix decision of multiconstrained operations.
|
145 |
Proposta de modelo para priorização de investimentos em infraestrutura de transporte de cargas: abordagem multicritério para problemas de fluxos em rede. / A proposed model for prioritizing investments in freight transport infrastructure: multi-criteria approach for network flow problems.Kazan, Samir 23 September 2013 (has links)
A relevância da infraestrutura de transporte para incrementos em produtividade, induzindo ao desenvolvimento socioeconômico de determinada região é amplamente reconhecida. O Brasil, no entanto, apresenta sérias deficiências em relação à sua infraestrutura de transporte, oriundas de seu desenvolvimento histórico e da redução de níveis de investimentos públicos no setor nas últimas décadas. Estas deficiências traduzem-se em grande concentração no modal rodoviário para o transporte de cargas, menos eficiente do que os modais ferroviário e hidroviário, resultando em reduzida competitividade das organizações nacionais. Neste contexto, objetivou-se no presente trabalho a proposição de um modelo para avaliação e seleção de investimentos em infraestrutura de transporte de cargas, considerando-se seu caráter multidimensional. Para isso, foi proposta metodologia integrando os conceitos de análise de decisão multicritério e de programação matemática, representados pela teoria de utilidade multiatributo (Multi-Attribute Utility Theory - MAUT) e por problema de otimização de fluxos em rede (Minimum Cost Network Flow Problem - MCNFP), respectivamente. No desenvolvimento do modelo foram contemplados critérios de avaliação referentes às dimensões de análise financeira, operacional e ambiental. Posteriormente, foi considerada a aplicação de versões do modelo proposto com diferentes números de períodos de análise em caso ilustrativo, representativo da rede de transporte disponível e planejada da região Norte do Brasil. A aplicação das diversas versões do modelo proposto, de forma geral, apresentou resultados compatíveis com as teorias relacionadas à avaliação deste problema de decisão, incluindo indução à multimodalidade. Algumas versões do modelo apresentaram violações em algumas de suas restrições. Estes resultados adversos não foram plenamente eliminados, devido a limitações das ferramentas adotadas para aplicação. No entanto, foi possível a correção manual destas violações, resultando em soluções viáveis que, apesar de não serem consideradas ótimas, são mais completas do que soluções obtidas por meio de metodologias unidimensionais de análise. Por fim, foram apresentadas recomendações para condução de trabalhos futuros visando eliminação dos resultados adversos do modelo proposto e complementação de sua análise. / The role of transport infrastructure in productivity increases leading to regional social-economic development is widely recognized. Brazil, however, has serious deficiencies in its transport infrastructure, rooted in the country\'s historical development and in the recent decades\' reduction of public investment in the sector. These deficiencies can be observed in Brazil\'s strong focus on roads for cargo transportation, which besides being less efficient than rail and waterways, results in reduced competitiveness of national enterprises. In this context, the aim of this work was to propose a model for evaluating and selecting investments in freight\'s transportation infrastructure, considering its multidimensional character. It was proposed a methodology integrating the concepts of multi-criteria decision analysis and mathematical programming, represented by the Multi-Attribute Utility Theory (MAUT) along with the Minimum Cost Network Flow Problem (MCNFP). The developed model included financial, operational and environmental analysis evaluation criteria. Subsequently, this study applied the proposed model into a case study of the transportation network, available and planned, of the Northern region of Brazil. Overall, the application of various versions of the proposed model yielded results consistent with related evaluation and decision making theories, including induction of multimodality. Some versions of the model presented some violations of its restrictions. These adverse results were not fully eliminated due to the limitations of the application tools utilized. It was possible, however, to manually correct these violations and obtain viable solutions that, while cannot be considered optimal, are more complete than those obtained by single dimension analysis. Finally, recommendations were made for future studies aiming at eliminating the proposed model\'s adverse outcomes, and complementing its analysis.
|
146 |
Técnicas de programação matemática para a análise e projeto de sistemas biotecnológicos. / Mathematical programming techniques for analysis and design of biotechnological systems.Carlos Arturo Martínez Ríascos 02 September 2005 (has links)
A complexidade de alguns sistemas biotecnológicos impossibilita seu estudo sem o uso de técnicas de programação matemática avançadas. A quantificação de fluxos metabólicos e a síntese e projeto ótimos de plantas multiproduto são problemas com esta característica, abordados na presente tese. A quantificação de fluxos metabólicos empregando balanços de marcações é representada como um problema de otimização não-linear, o qual se resolve através da minimização da diferença entre as medidas experimentais e as predições do modelo da rede metabólica. Este problema surge da necessidade de se caracterizar o metabolismo mediante a estimação das velocidades das reações bioquímicas. O modelo matemático para problemas deste tipo é composto basicamente por balanços de metabólitos e de isótopos; os primeiros são lineares, enquanto os segundos introduzem não-linearidades ao problema e, neste trabalho, são modelados mediante uma modificação da técnica de matrizes de mapeamento de átomos. Para quantificar os fluxos metabólicos considerando a existência de ótimos locais, desenvolveu-se um algoritmo branch & bound espacial, no qual a busca global é feita mediante a divisão da região de busca (branching) e a geração de seqüências de limites (bounding) que convergem para a solução global. Como estudo de caso, estimaram-se os fluxos no metabolismo central de Saccharomyces cerevisiae. Os resultados confirmam a existência de soluções locais e a necessidade de desenvolver uma estratégia de busca global; a solução global obtida apresenta semelhanças, nos fluxos centrais, com a melhor solução obtida por um algoritmo evolucionário. Quanto aos problemas de síntese e projeto de sistemas biotecnológicos multiproduto, As abordagens mais empregadas para resolve-los são a definição e dimensionamento seqüencial das operações unitárias, e a fixação dos parâmetros de dimensionamento e de estimação do tempo de operação (com valores obtidos em laboratório ou planta piloto); porém ambas abordagens fornecem soluções subótimas. Por outro lado, a solução simultânea da síntese e projeto de sistemas biotecnológicos multiproduto gera modelos misto-inteiros não-lineares (MINLP) de grande porte, devido à combinação das decisões, ligadas à existência de alternativas no processo, com as restrições não-lineares geradas dos modelos das operações. Como estudo de caso considera-se uma planta para produção de insulina, vacina para hepatite B, ativador de plasminogênio tecidual (tissue plasminogen activator) e superóxido dismutase, mediante três hospedeiros diferentes: levedura (S. cerevisiae) com expressão extra ou intracelular, Escherichia coli e células de mamíferos. O projeto deve satisfazer a meta de produção para cada produto, minimizando os custos de capital e selecionando os hospedeiros, as operações e o arranjo dos equipamentos em cada estágio. Os resultados obtidos mostram que a formulação das decisões por abordagem big-M permite resolver o modelo MINLP gerado e que a consideração de múltiplos produtos com seqüências e condições de processamento diferentes gera grande ociosidade nos equipamentos e aumenta o custo total do projeto. Para o estudo de caso observou-se que a alocação de tanques intermediários tem um efeito limitado na diminuição do custo do projeto, porém a implementação simultânea da flexibilização do scheduling, do projeto de equipamentos auxiliares e tanques intermediários permite obter projetos satisfatórios. / The complexity of biotechnological systems does not allow their study without the use of advanced mathematical programming techniques. Metabolic flux quantification and optimal synthesis and design of multiproduct plants are problems with this characteristic, and are addressed in this thesis. The metabolic flux quantification employing labeling balances is formulated as a nonlinear optimization problem that is solved by the minimization of the difference between experimental measurements and predictions of the metabolic network model. This problem is generated by the necessity of estimating the rates of biochemical reactions that characterize the metabolism. The mathematical model for this class of problems is composed by balances of metabolites and isotopes; the former are linear whereas the latter are nonlinear and, in this work, are modeled by a modification of the atom mapping matrix technique. A spatial branch & bound algorithm was developed to quantify the metabolic fluxes, that considers the existence of local optima; in this algorithm, the global search is developed by the division of the searching region (branching) and the generation of sequences of bounds (bounding) that converge to the global solution. As a case study, fluxes in central metabolism of Saccharomyces cerevisiae were estimated. The results confirm the existence of local solutions and the necessity of develop a global search strategy; the central fluxes in the obtained global solution are similar to those ones obtained by an evolutionary algorithm. To solve problems of synthesis and design of multiproduct biotechnological systems, the most employed approaches are the sequential selection and sizing of the unit operations, and the fixing of sizing and time parameters (employing values from laboratory or pilot plants); nevertheless, both approaches generate suboptimal solutions. On the other hand, the simultaneous solution of the synthesis and design of multiproduct biotechnological systems generates large size mixed-integer nonlinear models (MINLP), due to the combination of options into the processing with nonlinear constraints from the operation models. As case study, a plant for production of insulin, hepatitis B vaccine, tissue plasminogen activator and superoxide dismutase was considered, by three hosts: yeast (S. cerevisiae) with extra or intracellular expression, Escherichia coli and mammalian cells. The design must satisfy the production target for each product, minimizing the capital cost and considering the selection of hosts, the operations and the number of parallel units in each stage. The obtained results show that the formulation of decisions by the big-M approach allows the solution of the generated MINLP model and that consideration of several products with different processing sequences and conditions generates large idleness at the equipment and increases the total cost of the design. In the case study it was observed that the allocation of storage tanks has a limited effect on cost reduction, but the simultaneous implementation of flexible scheduling, design of auxiliary equipments and intermediate storage tanks allow the generation of satisfactory designs.
|
147 |
Contribution au Développement de Transport Vert : Proposition d'un Plan de Recharge par Segments des Véhicules Électriques : Étude d'un problème de Tournées de Véhicules Mixtes / Contribution to the Development of Green Transport : Proposal of a Recharging Plan by Segments for Electric Vehicles : Study of a Mix Vehicle Routing ProblemMouhrim, Nisrine 09 March 2019 (has links)
La mise en oeuvre des véhicules électriques dans le secteur du transport de fret présente une solution durable qui répond aux objectifs environnementaux et économiques. Cette thèse s'oriente dans cette direction, elle porte sur l'étude des problèmes de transport électrique selon deux niveaux décisionnels à savoir le niveau stratégique et opérationnel.Au niveau stratégique, nous traitons le problème d'allocation des segments de recharge d'un véhicule électrique par des ondes électromagnétiques. Pour cela, nous proposons une modélisation du problème sous forme de programme mathématique mixte en nombre entier qui tient compte de la particularité du réseau routier et du véhicule. L'objectif est de déterminer; dans un réseau qui se compose de plusieurs chemins; une allocation stratégique qui constitue un compromis entre le coût d'achat du matériel de recharge et le coût de la batterie en satisfaisant un ensemble de contraintes liées au fonctionnement du système lors de l'exploitation et qui garantissent l'arrivée du véhicule à sa destination sans rupture de charge. Ainsi, nous montrons l'utilité de nos travaux dans un contexte industriel à travers le projet 'Green Truck'. Ce projet consiste à remplacer les camions à combustion par les camions électriques; adapté à la technologie d'alimentation par induction; dans la zone industrialo-portuaire du Havre. Dans cette optique et dans un premier temps, nous traitons le problème d'installation des segments de recharge dynamique. Dans un deuxième temps, nous intégrons le mode de rechargement statique dans la stratégie d'allocation. Nous adoptons la version multi-objective de l'algorithme d'optimisation par essaim de particules pour résoudre le problème. En effet, l'algorithme a montré sa robustesse et son efficacité vis-à-vis de problèmes d'optimisation non-linéaires. Après la linéarisation de notre modèle, nous comparons les résultats obtenus avec ceux issus à partir du solveur CPLEX. Nous montrons la validité des résultats obtenus à travers leur analyse et leur discussion.Au niveau opérationnel, nous étudions le problème de tournées de véhicules dans le cas d'une flott( mixte composée de véhicules électriques et à combustion, ce qui est un véritable réseau industrie rencontré dans la pratique. La particularité de notre travail réside dans la considération du cas où le émissions sont limitées par un système de plafonnement d'émissions pour les véhicule conventionnels. Afin de résoudre le modèle mathématique que nous avons élaboré, nous avons indu trois heuristiques dans l'algorithme SPEA-II qui répondent aux contraintes engendrées par la batterie limitée des véhicules électriques. Après l'analyse des performances de l'algorithme résultant, nou, concluons que l'approche de résolution permet d'achever des résultats compétitifs. / The implementation of electric vehicles in the freight transport sector presents a sustainable solution that meets environmental and economic objectives. This thesis is oriented in this direction, it deals with the study of the problems of electric transportation according to two decisional levels namely the strategic and operational levels.At the strategic level, we study the problem of the location of the wireless charging infrastructure in a transport network composed of multiple routes between the origin and the destination. To find a strategic solution to this problem, we first and foremost propose a nonlinear integer programming solution to reach a compromise between the cost of the battery, which is related to its capacity, and the cost of installing the power transmitters, while maintaining the quality of the vehicle's routing. Thus, we show the utility of our work in an industrial context through the 'Green Truck' project. This project consists of replacing diesel trucks by inductive trucks in the industrial-port area of Le Havre. Initially, we are dealing with the problem of allocation of dynamic charging segments. In a second step, we integrate the static reload mode in the allocation strategy. We adapt the multi-objective particle swarm optimization (MPSO) approach to our problem, as the particles were robust in solving nonlinear optimization problems. Since we have a multi-objective problem with two binary variables, we combine the binary and discrete versions of the particle swarm optimization approach with the multi-objective one. To assess the quality of solutions generated by the PSO algorithm, the problem is transformed into an equivalent linear programming problem and solved with CPLEX optimizer. The results are analyzed and discussed in order to point out the efficiency of our resolution method.At the operational level, we study a new version of the vehicle routing problem with a mix fleet of electric and combustion vehicles, which is a real industrial network encountered in practice. The particularity of our work lies in the consideration of the case where emissions are limited by an emission cap system for conventional vehicles. In order to solve the mathematical model that we have developed, we have included three heuristics in the SPEA-II algorithm that respond to the constraints generated by the limited battery of electric vehicles. After analyzing the performance of the resulting algorithm, we conclude that the resolution approach achieves competitive results.
|
148 |
Sustainable Convergence of Electricity and Transport Sectors in the Context of Integrated Energy SystemsHajimiragha, Amirhossein January 2010 (has links)
Transportation is one of the sectors that directly touches the major challenges that energy utilities are faced with, namely, the significant increase in energy demand and environmental issues. In view of these concerns and the problems with the supply of oil, the pursuit of alternative fuels for meeting the future energy demand of the transport sector has gained much attention. The future of transportation is believed to be based on electric drives in fuel cell vehicles (FCVs) or plug-in electric vehicles (PEVs). There are compelling reasons for this to happen: the efficiency of electric drive is at least three times greater than that of combustion processes and these vehicles produce almost zero emissions, which can help relieve many environmental concerns. The future of PEVs is even more promising because of the availability of electricity infrastructure. Furthermore, governments around the world are showing interest in this technology by investing billions of dollars in battery technology and supportive incentive programs for the customers to buy these vehicles. In view of all these considerations, power systems specialists must be prepared for the possible impacts of these new types of loads on the system and plan for the optimal transition to these new types of vehicles by considering the electricity grid constraints. Electricity infrastructure is designed to meet the highest expected demand, which only occurs a few hundred hours per year. For the remaining time, in particular during off-peak hours, the system is underutilized and could generate and deliver a substantial amount of energy to other sectors such as transport by generating hydrogen for FCVs or charging the batteries in PEVs. This thesis investigates the technical and economic feasibility of improving the utilization of electricity system during off-peak hours through alternative-fuel vehicles (AFVs) and develops optimization planning models for the transition to these types of vehicles. These planning models are based on decomposing the region under study into different zones, where the main power generation and electricity load centers are located, and considering the major transmission corridors among them. An emission cost model of generation is first developed to account for the environmental impacts of the extra load on the electricity grid due to the introduction of AFVs. This is followed by developing a hydrogen transportation model and, consequently, a comprehensive optimization model for transition to FCVs in the context of an integrated electricity and hydrogen system. This model can determine the optimal size of the hydrogen production plants to be developed in different zones in each year, optimal hydrogen transportation routes and ultimately bring about hydrogen economy penetration. This model is also extended to account for optimal transition to plug-in hybrid electric vehicles (PHEVs). Different aspects of the proposed transition models are discussed on a developed 3-zone test system. The practical application of the proposed models is demonstrated by applying them to Ontario, Canada, with the purpose of finding the maximum potential penetrations of AFVs into Ontario’s transport sector by 2025, without jeopardizing the reliability of the grid or developing new infrastructure. Applying the models to this real-case problem requires the development of models for Ontario’s transmission network, generation capacity and base-load demand during the planning study. Thus, a zone-based model for Ontario’s transmission network is developed relying on major 500 and 230 kV transmission corridors. Also, based on Ontario’s Integrated Power System Plan (IPSP) and a variety of information provided by the Ontario Power Authority (OPA) and Ontario’s Independent Electricity System Operator (IESO), a zonal pattern of base-load generation capacity is proposed. The optimization models developed in this study involve many parameters that must be estimated; however, estimation errors may substantially influence the optimal solution. In order to resolve this problem, this thesis proposes the application of robust optimization for planning the transition to AFVs. Thus, a comprehensive sensitivity analysis using Monte Carlo simulation is performed to find the impact of estimation errors in the parameters of the planning models; the results of this study reveals the most influential parameters on the optimal solution. Having a knowledge of the most affecting parameters, a new robust optimization approach is applied to develop robust counterpart problems for planning models. These models address the shortcoming of the classical robust optimization approach where robustness is ensured at the cost of significantly losing optimality. The results of the robust models demonstrate that with a reasonable trade-off between optimality and conservatism, at least 170,000 FCVs and 900,000 PHEVs with 30 km all-electric range (AER) can be supported by Ontario’s grid by 2025 without any additional grid investments.
|
149 |
Sustainable Convergence of Electricity and Transport Sectors in the Context of Integrated Energy SystemsHajimiragha, Amirhossein January 2010 (has links)
Transportation is one of the sectors that directly touches the major challenges that energy utilities are faced with, namely, the significant increase in energy demand and environmental issues. In view of these concerns and the problems with the supply of oil, the pursuit of alternative fuels for meeting the future energy demand of the transport sector has gained much attention. The future of transportation is believed to be based on electric drives in fuel cell vehicles (FCVs) or plug-in electric vehicles (PEVs). There are compelling reasons for this to happen: the efficiency of electric drive is at least three times greater than that of combustion processes and these vehicles produce almost zero emissions, which can help relieve many environmental concerns. The future of PEVs is even more promising because of the availability of electricity infrastructure. Furthermore, governments around the world are showing interest in this technology by investing billions of dollars in battery technology and supportive incentive programs for the customers to buy these vehicles. In view of all these considerations, power systems specialists must be prepared for the possible impacts of these new types of loads on the system and plan for the optimal transition to these new types of vehicles by considering the electricity grid constraints. Electricity infrastructure is designed to meet the highest expected demand, which only occurs a few hundred hours per year. For the remaining time, in particular during off-peak hours, the system is underutilized and could generate and deliver a substantial amount of energy to other sectors such as transport by generating hydrogen for FCVs or charging the batteries in PEVs. This thesis investigates the technical and economic feasibility of improving the utilization of electricity system during off-peak hours through alternative-fuel vehicles (AFVs) and develops optimization planning models for the transition to these types of vehicles. These planning models are based on decomposing the region under study into different zones, where the main power generation and electricity load centers are located, and considering the major transmission corridors among them. An emission cost model of generation is first developed to account for the environmental impacts of the extra load on the electricity grid due to the introduction of AFVs. This is followed by developing a hydrogen transportation model and, consequently, a comprehensive optimization model for transition to FCVs in the context of an integrated electricity and hydrogen system. This model can determine the optimal size of the hydrogen production plants to be developed in different zones in each year, optimal hydrogen transportation routes and ultimately bring about hydrogen economy penetration. This model is also extended to account for optimal transition to plug-in hybrid electric vehicles (PHEVs). Different aspects of the proposed transition models are discussed on a developed 3-zone test system. The practical application of the proposed models is demonstrated by applying them to Ontario, Canada, with the purpose of finding the maximum potential penetrations of AFVs into Ontario’s transport sector by 2025, without jeopardizing the reliability of the grid or developing new infrastructure. Applying the models to this real-case problem requires the development of models for Ontario’s transmission network, generation capacity and base-load demand during the planning study. Thus, a zone-based model for Ontario’s transmission network is developed relying on major 500 and 230 kV transmission corridors. Also, based on Ontario’s Integrated Power System Plan (IPSP) and a variety of information provided by the Ontario Power Authority (OPA) and Ontario’s Independent Electricity System Operator (IESO), a zonal pattern of base-load generation capacity is proposed. The optimization models developed in this study involve many parameters that must be estimated; however, estimation errors may substantially influence the optimal solution. In order to resolve this problem, this thesis proposes the application of robust optimization for planning the transition to AFVs. Thus, a comprehensive sensitivity analysis using Monte Carlo simulation is performed to find the impact of estimation errors in the parameters of the planning models; the results of this study reveals the most influential parameters on the optimal solution. Having a knowledge of the most affecting parameters, a new robust optimization approach is applied to develop robust counterpart problems for planning models. These models address the shortcoming of the classical robust optimization approach where robustness is ensured at the cost of significantly losing optimality. The results of the robust models demonstrate that with a reasonable trade-off between optimality and conservatism, at least 170,000 FCVs and 900,000 PHEVs with 30 km all-electric range (AER) can be supported by Ontario’s grid by 2025 without any additional grid investments.
|
150 |
Impacts Of Policy Changes On Turkish Agriculture: An Optimization Model With Maximum EntropyEruygur, Hakki Ozan 01 October 2006 (has links) (PDF)
Turkey moves towards integration with EU since 1963. The membership will
involve full liberalization of trade in agricultural products with EU. The impact
of liberalization depends on the path of agricultural policies in Turkey and the
EU. On the other hand, agricultural protection continues to be the most
controversial issue in global trade negotiations of World Trade Organization
(WTO). To evaluate the impacts of policy scenarios, an economic modeling
approach based on non-linear mathematical programming is appropriate. This
thesis analyzes the impacts of economic integration with the EU and the
potential effects of the application of a new WTO agreement in 2015 on
Turkish agriculture using an agricultural sector model. The basic approach is
Maximum Entropy based Positive Mathematical Programming of Heckelei and
Britz (1999). The model is based on a static optimization algorithm. Following
an economic integration with EU, the net export of crops declines and can not
tolerate the boom in net import of livestock products. Overall welfare affect is
small. Consumers benefit from declining prices. Common Agricultural Policy
(CAP) supports are determinative for the welfare of producers. WTO
simulation shows that a 15 percent reduction in Turkey&rsquo / s binding WTO tariff
commitments will increase net meat imports by USD 250 million.
|
Page generated in 0.1561 seconds