• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In what case is it possible to speak about Mathematical capability among pre-school children?

Beloshistaya, Anna V. 12 April 2012 (has links) (PDF)
Most of people have fatal attitude to Mathematics: some of them are capable to learn it form nature, but the others are not. So is their fate – to suffer from it for the whole of life… But it is a rude though natural mistake, as it results from means of mathematical education and its content. Most of parents and teachers are directed on these aspects both in kindergarten and at primary school. Of course, parents are different. Nevertheless so many parents can’t possibly but speak about achievements of their children. Some start making their own children learn better by the example of success of the others. They make their children learn long chains of figures with no understanding. It is even more sad to see how a mom asks her 4-year old son: “How much is two plus three?..’ But he replies just because he learned the answer but not calculated. Not only parents but also kindergarten tutors don’t want to understand that drilling for arithmetic has no sense. For a specialist it would take two days only…But teach him how to think logically – is a goal demanding from him, reached by different means.
2

In what case is it possible to speak about Mathematical capability among pre-school children?

Beloshistaya, Anna V. 12 April 2012 (has links)
Most of people have fatal attitude to Mathematics: some of them are capable to learn it form nature, but the others are not. So is their fate – to suffer from it for the whole of life… But it is a rude though natural mistake, as it results from means of mathematical education and its content. Most of parents and teachers are directed on these aspects both in kindergarten and at primary school. Of course, parents are different. Nevertheless so many parents can’t possibly but speak about achievements of their children. Some start making their own children learn better by the example of success of the others. They make their children learn long chains of figures with no understanding. It is even more sad to see how a mom asks her 4-year old son: “How much is two plus three?..’ But he replies just because he learned the answer but not calculated. Not only parents but also kindergarten tutors don’t want to understand that drilling for arithmetic has no sense. For a specialist it would take two days only…But teach him how to think logically – is a goal demanding from him, reached by different means.
3

Count on the brain

Dix, Annika 11 January 2016 (has links)
Wir können Mathematikleistungen über fluide Intelligenz (FI) vorhersagen. Der Einfluss von FI auf kognitive Prozesse und neuronale Mechanismen, die mathematischen Fähigkeiten in verschiedenen Teildisziplinen zugrunde liegen, ist jedoch wenig verstanden. Vorliegende Arbeit spezifiziert FI-bezogene Unterschiede in diesen Prozessen und Mechanismen beim Lösen von Geometrie-, Arithmetik- und Algebra-Aufgaben. Mithilfe eines multimethodalen Ansatzes beleuchtet sie das Zusammenspiel zwischen FI, Leistung und Faktoren wie Aufgabenkomplexität, Lernen und Strategiewahl, die kognitive Prozesse und Anforderungen beim Problemlösen beeinflussen. Leistungsunterschiede wurden durch Messung von Reaktionszeiten und Fehlerraten, Strategien durch Augenbewegungsanalyse erfasst. Als Indikator kortikaler Aktivität diente die ereigniskorrelierte (De-)Synchronisation (ERD/ERS) im Alpha-Band. Um kognitive Prozesse zu unterscheiden, haben wir die ERD/ERS im Theta-Band und den Alpha-Unterbändern einbezogen. Beim Lösen unvertrauter geometrischer Analogien zeichnete sich hohe FI durch verstärkte Verarbeitung visuell-räumlicher Informationen zum Repräsentieren von Merkmalszusammenhängen aus. Schüler mit hoher FI passten ihre Strategiewahl den Anforderungen flexibler an. Erstmals konnten wir durch trialweise Identifikation von Strategien FI-bezogene Unterschiede in der neuronalen Effizienz der Strategieausführung feststellen. Beim Lösen vertrauter arithmetischer und algebraischer Terme zeigten sich bei Schülern mit hoher im Vergleich zu Schülern mit durchschnittlicher FI geringere Anforderungen zur Aktualisierung numerischer Repräsentationen und eine bessere Leistung in komplexen Aufgaben. Weitere Analysen legen nahe, dass Schüler mit hoher FI Zusammenhänge in der Aufgabenstruktur besser erkennen und passende Routinen abrufen können. Die Fähigkeit Zusammenhangsrepräsentationen zu bilden könnte demnach ein Schlüsselaspekt zur Erklärung FI-abhängiger Unterschiede in mathematischen Fähigkeiten sein. / Fluid intelligence (FI) is a strong predictor of mathematical performance. However, the impact of FI on cognitive processes and neural mechanisms underlying differences in mathematical abilities across different subdivisions is not well understood. The present work specifies FI-related differences in these processes and mechanisms for students solving geometric, arithmetic, and algebraic problems. We chose a multi-methodological approach to shed light on the interplay between FI, performance, and factors such as task complexity, learning, and strategy selection that influence cognitive processes and task demands in problem-solving. We measured response times and error rates to evaluate performance, eye movements to identify solution strategies, and the event-related (de-)synchronization (ERD/ERS) in the broad alpha band as indicator of general cortical activity. Further, we considered the ERD/ERS in the theta band and the alpha sub-bands to distinguish between associated cognitive processes. For unfamiliar geometric analogy tasks, students with high FI built relational representations based on a more intense processing of spatial information. Strategy analyses revealed a more adaptive strategy choice in response to increasing task demands compared to students with average FI. Further, we conducted the first study identifying strategies and related cortical activity trial-wise and thereby identified FI-related differences in the neural efficiency of strategy execution. For solving familiar arithmetic and algebraic problems, high compared to average FI was associated with lower demands on the updating of numbers leading to a better performance in complex tasks. Further analyses suggest that students with high FI had an advantage to identify the relational structure of the problems and to retrieve routines that match this structure. Thus, the ability to build relational representations might be one key aspect explaining FI-related difference in mathematical abilities.

Page generated in 0.0812 seconds