• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 93
  • 93
  • 75
  • 63
  • 38
  • 29
  • 26
  • 22
  • 21
  • 21
  • 21
  • 21
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Digitálně řízený spínaný napájecí zdroj / Digitally Controlled Switching Power Supply

Krška, Vlastimil January 2011 (has links)
This master’s thesis is an introduction to switching mode power supplies, especially focused on digital control. It summarizes the basic topologies of switching mode power supplies, and discusses the fundamental issues of digital power supply control. It also summarizes basic informations about Piccolo microcontrolers, about experimental kit and about main parts of sample source code. Also is described here own implementation of the control law and the theory and implementation of maximum power point tracking. The conclusion of this thesis deals with implemantation a testing of the designed digitally controled switching power supply.
62

Ovlivnění maximálního výkonu na kajakářském trenažéru metodou Dynamické neuromuskulární stabilizace u rychlostních kajakářů / Influence of Dynamic Neuromuscular Stabilization Approach on Maximum Kayak Paddling Power

Davídek, Pavel January 2020 (has links)
INTRODUCTION: The aim of this thesis is to identify the effect of trunk stabilization training based on Dynamic Neuromuscular Stabilization (DNS) on maximum kayak ergometer power output and reported self-disability in the shoulder girdle area. METHOD: Thirty flatwater kayakers of both genders (17 - 25 years old) were randomly divided into two groups. Crossover design was used for this study. Subjects in the experimental group (group A) integrated DNS exercises into standard flatwater training during the first phase. The control group (group B) conducted only common flat water training at the same time. After 6 weeks, the groups were switched. Then group B underwent the same DNS exercise with the same intensity and the same time. The intervention was the same for both phases and took 6 weeks. Group A performed only standard off-season training during the second phase. The maximum power output on kayak ergometer was measured three times (before study, after 6 weeks and after 12 weeks). Disabilities of the Arm, Shoulder and Hand (DASH) were analyzed at the same time. RESULTS: Initially, no significant differences in maximum power output on kayak ergometer and the DASH questionnaire score were identified between the groups. During the first phase the experimental group (group A) improved the maximum...
63

Photovoltaic Maximum Power Point Tracking using Optimization Algorithms

Pervez, Imran 04 1900 (has links)
The necessity for clean and sustainable energy has shifted the energy sector’s interest in renewable energy sources. Photovoltaics (PV) is the most popular renewable energy source because the sun is ubiquitous. However, several discrepancies exist in a PV system when implemented for real-world applications. Among several other existing problems related to Photovoltaics, in this work, we deal with maximum power point tracking (MPPT) under Partial Shading (PS) conditions. MPPT is a mechanism formulated as an optimization problem adjusting the PV to deliver the maximum power to the load. Under full insolation conditions, varying solar panel temperatures, and different loads MPPT problem is a convex optimization problem. However, when the PV’s surface is partially shaded, multiple power peaks are created in the power versus voltage (P-V) curve making MPPT non-convex.
64

Maximum Energy Harvesting Control Foroscillating Energy Harvesting Systems

Elmes, John 01 January 2007 (has links)
This thesis presents an optimal method of designing and controlling an oscillating energy harvesting system. Many new and emerging energy harvesting systems, such as the energy harvesting backpack and ocean wave energy harvesting, capture energy normally expelled through mechanical interactions. Often the nature of the system indicates slow system time constants and unsteady AC voltages. This paper reveals a method for achieving maximum energy harvesting from such sources with fast determination of the optimal operating condition. An energy harvesting backpack, which captures energy from the interaction between the user and the spring decoupled load, is presented in this paper. The new control strategy, maximum energy harvesting control (MEHC), is developed and applied to the energy harvesting backpack system to evaluate the improvement of the MEHC over the basic maximum power point tracking algorithm.
65

Realization Of Power Factor Correction And Maximum Power Point Tracking For Low Power Wind Turbines

Gamboa, Gustavo 01 January 2009 (has links)
In recent years, wind energy technology has become one of the top areas of interest for energy harvesting in the power electronics world. This interest has especially peaked recently due to the increasing demand for a reliable source of renewable energy. In a recent study, the American Wind Energy Association (AWEA) ranked the U.S as the leading competitor in wind energy harvesting followed by Germany and Spain. Although the United States is the leading competitor in this area, no one has been able successfully develop an efficient, low-cost AC/DC convertor for low power turbines to be used by the average American consumer. There has been very little research in low power AC/DC converters for low to medium power wind energy turbines for battery charging applications. Due to the low power coefficient of wind turbines, power converters are required to transfer the maximum available power at the highest efficiency. Power factor correction (PFC) and maximum power point tracking (MPPT) algorithms have been proposed for high power wind turbines. These turbines are out of the price range of what a common household can afford. They also occupy a large amount of space, which is not practical for use in one's home. A low cost AC/DC converter with efficient power transfer is needed in order to promote the use of cheaper low power wind turbines. Only MPPT is implemented in most of these low power wind turbine power converters. The concept of power factor correction with MPPT has not been completely adapted just yet. The research conducted involved analyzing the effect of power factor correction and maximum power point tracking algorithm in AC/DC converters for wind turbine applications. Although maximum power to the load is always desired, most converters only take electrical efficiency into consideration. However, not only the electrical efficiency must be considered, but the mechanical energy as well. If the converter is designed to look like a purely resistive load and not a switched load, a wind turbine is able to supply the maximum power with lower conduction loss at the input side due to high current spikes. Two power converters, VIENNA with buck converter and a Buck-boost converter, were designed and experimentally analyzed. A unique approach of controlling the MPPT algorithm through a conductance G for PFC is proposed and applied in the VIENNA topology. On the other hand, the Buck-boost only operates MPPT. With the same wind profile applied for both converters, an increase in power drawn from the input increased when PFC was used even when the power level was low. Both topologies present their own unique advantages. The main advantage for the VIENNA converter is that PFC allowed more power extraction from the turbine, increasing both electrical and mechanical efficiency. The buck-boost converter, on the other hand, presents a very low component count which decreases the overall cost and volume. Therefore, a small, cost-effective converter that maximizes the power transfer from a small power wind turbine to a DC load, can motivate consumers to utilize the power available from the wind.
66

Development of Deposition and Characterization Systems for Thin Film Solar Cells

Cimaroli, Alexander J. January 2016 (has links)
No description available.
67

DFIG-BASED SPLIT-SHAFT WIND ENERGY CONVERSION SYSTEMS

Rasoul Akbari (13157394) 27 July 2022 (has links)
<p>In this research, a Split-Shaft Wind Energy Conversion System (SS-WECS) is investigated</p> <p>to improve the performance and cost of the system and reduce the wind power</p> <p>uncertainty influences on the power grid. This system utilizes a lightweight Hydraulic Transmission</p> <p>System (HTS) instead of the traditional gearbox and uses a Doubly-Fed Induction</p> <p>Generator (DFIG) instead of a synchronous generator. This type of wind turbine provides</p> <p>several benefits, including decoupling the shaft speed controls at the turbine and the generator.</p> <p>Hence, maintaining the generator’s frequency and seeking maximum power point</p> <p>can be accomplished independently. The frequency control relies on the mechanical torque</p> <p>adjustment on the hydraulic motor that is coupled with the generator. This research provides</p> <p>modeling of an SS-WECS to show its dependence on mechanical torque and a control</p> <p>technique to realize the mechanical torque adjustments utilizing a Doubly-Fed Induction</p> <p>Generator (DFIG). To this end, a vector control technique is employed, and the generator</p> <p>electrical torque is controlled to adjust the frequency while the wind turbine dynamics</p> <p>influence the system operation. The results demonstrate that the generator’s frequency is</p> <p>maintained under any wind speed experienced at the turbine.</p> <p>Next, to reduce the size of power converters required for controlling DFIG, this research</p> <p>introduces a control technique that allows achieving MPPT in a narrow window of generator</p> <p>speed in an SS-WECS. Consequently, the size of the power converters is reduced</p> <p>significantly. The proposed configuration is investigated by analytical calculations and simulations</p> <p>to demonstrate the reduced size of the converter and dynamic performance of the</p> <p>power generation. Furthermore, a new configuration is proposed to eliminate the Grid-</p> <p>Side Converter (GSC). This configuration employs only a reduced-size Rotor-Side Converter</p> <p>(RSC) in tandem with a supercapacitor. This is accomplished by employing the hydraulic</p> <p>transmission system (HTS) as a continuously variable and shaft decoupling transmission</p> <p>unit. In this configuration, the speed of the DFIG is controlled by the RSC to regulate the</p> <p>supercapacitor voltage without GSC. The proposed system is investigated and simulated in</p> <p>MATLAB Simulink at various wind speeds to validate the results.</p> <p>Next, to reduce the wind power uncertainty, this research introduces an SS-WECS where the system’s inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically</p> <p>coupled with the rotor of the DFIG. Employing the HTS in such a configuration allows the</p> <p>turbine controller to track the point of maximum power (MPPT) while the generator controller</p> <p>can adjust the generator speed. As a result, the flywheel, which is directly connected</p> <p>to the shaft of the generator, can be charged and discharged by controlling the generator</p> <p>speed. In this process, the flywheel energy can be used to modify the electric power generation</p> <p>of the generator on-demand. This improves the quality of injected power to the</p> <p>grid. Furthermore, the structure of the flywheel energy storage is simplified by removing</p> <p>its dedicated motor/generator and the power electronics driver. Two separate supervisory</p> <p>controllers are developed using fuzzy logic regulators to generate a real-time output power</p> <p>reference. Furthermore, small-signal models are developed to analyze and improve the MPPT</p> <p>controller. Extensive simulation results demonstrate the feasibility of such a system and its</p> <p>improved quality of power generation.</p> <p>Next, an integrated Hybrid Energy Storage System (HESS) is developed to support the</p> <p>new DFIG excitation system in the SS-WECS. The goal is to improve the power quality</p> <p>while significantly reducing the generator excitation power rating and component counts.</p> <p>Therefore, the rotor excitation circuit is modified to add the storage to its DC link directly.</p> <p>In this configuration, the output power fluctuation is attenuated solely by utilizing the RSC,</p> <p>making it self-sufficient from the grid connection. The storage characteristics are identified</p> <p>based on several system design parameters, including the system inertia, inverter capacity,</p> <p>and energy storage capacity. The obtained power generation characteristics suggest an energy</p> <p>storage system as a mix of fast-acting types and a high energy capacity with moderate</p> <p>acting time. Then, a feedback controller is designed to maintain the charge in the storage</p> <p>within the required limits. Additionally, an adaptive model-predictive controller is developed</p> <p>to reduce power generation fluctuations. The proposed system is investigated and simulated</p> <p>in MATLAB Simulink at various wind speeds to validate the results and demonstrate the</p> <p>system’s dynamic performance. It is shown that the system’s inertia is critical to damping</p> <p>the high-frequency oscillations of the wind power fluctuations. Then, an optimization approach</p> <p>using the Response Surface Method (RSM) is conducted to minimize the annualized</p> <p>cost of the Hybrid Energy Storage System (HESS); consisting of a flywheel, supercapacitor, and battery. The goal is to smooth out the output power fluctuations by the optimal</p> <p>size of the HESS. Thus, a 1.5 MW hydraulic wind turbine is simulated, and the HESS is</p> <p>configured and optimized. The direct connection of the flywheel allows reaching a suitable</p> <p>level of smoothness at a reasonable cost. The proposed configuration is compared with the</p> <p>conventional storage, and the results demonstrate that the proposed integrated HESS can</p> <p>decrease the annualized storage cost by 71 %.</p> <p>Finally, this research investigates the effects of the reduced-size RSC on the Low Voltage</p> <p>Ride Through (LVRT) capabilities required from all wind turbines. One of the significant</p> <p>achievements of an SS-WECS is the reduced size excitation circuit. The grid side converter is</p> <p>eliminated, and the size of the rotor side converter (RSC) can be safely reduced to a fraction</p> <p>of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage</p> <p>and handles the regular operation well. However, the fault conditions may expose conditions</p> <p>on the converter and push it to its limits. Therefore, four different protection circuits are</p> <p>employed, and their effects are investigated and compared to evaluate their performance.</p> <p>These four protection circuits include the active crowbar, active crowbar along a resistorinductor</p> <p>circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter</p> <p>(NBFCL). The wind turbine controllers are also adapted to reduce the impact of the fault</p> <p>on the power electronic converters. One of the effective methods is to store the excess energy</p> <p>in the generator’s rotor. Finally, the proposed LVRT strategies are simulated in MATLAB</p> <p>Simulink to validate the results and demonstrate their effectiveness and functionality.</p>
68

The Development of a DC Micro-grid model with Maximum Power Point Tracking for Waste Heat Recovery Systems

Elrakaybi, Ahmed 06 1900 (has links)
Research in sustainable energy sources has become the interest of many studies due to the increasing energy demand and the amount of wasted energy released from existing methods, along with their effect on climate change and environment sustainability. Thermo-Electric Generators (TEGs) are a potential solution that is being studied and implemented as they can convert low grade thermal energy to useful electrical energy at various operating conditions. The integration of a TEG within a heat exchanger (TEG/HX) system connected to an electrical DC micro-grid, using a Maximum Power Point Tracking (MPPT) system is the focus of this study. Using a numerical TEG/HX model from a previous study and a developed DC micro-grid model the interaction between the thermal and electrical aspects were investigated with the focus on the electrical performance of the system. The main concern of this study is to investigate the effect of the sub components of the DC micro-grid on the overall available energy. An analytic model was developed to estimate the power loss in the electrical circuit of the micro-grid, the model utilizes the equations for switching and conduction losses which have been used by several studies. Other variables such as the battery characteristics and electrical load profiles were also investigated by simulating several case studies including changing operating conditions. This study shows the effect of a TEG configuration on the power loss in an electrical system using power loss curves in comparison with the Open Circuit Voltage (OCV) of such configuration. It also covers important modes of operation for the battery, loads and MPPT for a stable and reliable operation of an isolated DC micro-grid system were TEGs are the only source of power. The result of the study presented is a system design that is able to maximize the electrical energy harvested from the TEGs to extend the operation of the dc-micro-grid first by applying a suitable TEG configuration and consequently a suitable electrical circuit. Secondly, by adapting to the changing operating conditions of the TEGs and the loads; and compensating for these changes using the battery storage system. / Thesis / Master of Applied Science (MASc)
69

Multi-source Energy Harvesting for Wildlife Tracking

Wu, You 06 July 2015 (has links)
Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional ways of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking collar with multi-source energy harvester with advantage of high efficiency and reliability is proposed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will extend the duration of wild life tracking by 20% time as was estimated. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. A novel electromagnetic pendulum energy harvester with motion regulator is proposed which can mechanically rectify the irregular bidirectional swing motion of the pendulum into unidirectional rotational motion of the motor. No electrical rectifier is needed and voltage drops from diodes can be avoided, the EM pendulum energy harvester can provide 200~300 mW under the 0.4g base excitation of 4.5 Hz. The nonlinearity of the disengage mechanism in the pendulum energy harvester will lead to a broad bandwidth frequency response. Simulation results shows the broadband advantage of the proposed energy harvester and experiment results verified that at some frequencies over the natural frequency the efficiency is increased. / Master of Science
70

Implementering av MPPT-enhet med återkoppling : avsedd för solceller

Bergroth, Simon January 2019 (has links)
No description available.

Page generated in 0.0455 seconds