• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 5
  • 5
  • Tagged with
  • 59
  • 50
  • 23
  • 16
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conception d’un solveur haute performance de systèmes linéaires creux couplant des méthodes multigrilles et directes pour la résolution des équations de Maxwell 3D en régime harmonique discrétisées par éléments finis

Chanaud, Mathieu 18 October 2011 (has links)
Cette thèse présente une méthode parallèle de résolution de systèmes linéaires creux basée sur un algorithme multigrille géométrique. Les estimations de la solution sont calculées par méthode directe sur le niveau grossier ou par méthode itérative de type splitting sur les maillages raffinés; des opérateurs inter-grilles sont définis pour interpoler les solutions approximatives entre les différents niveaux de raffinements. Ce solveur est utilisé dans le cadre de simulations électromagnétiques en 3D (équations de Maxwell en régime harmonique discrétisées par éléments finis de Nédélec de premier ordre) en tant que méthode stationnaire ou comme préconditionneur d’une méthode de Krylov (GMRES). / Multigrid algorithm. The system is solved thanks to a direct method on the coarse mesh anditerative splitting method on refined meshes; inter-grid operators are defined to interpolate theapproximate solutions on the different refinement levels. Applied to 3D electromagnetic simulations(Nédélec first order finite element approximation of time harmonic Maxwell equations) thissolver is used either as a stationary method or as a preconditioner for a Krylov subspace method(GMRES).
12

Developing Dendrifrom Facades Using Flow Nets as a Design Aid

Houston, Jonas H. 01 December 2011 (has links) (PDF)
This thesis highlights a method of arriving at form that minimizes the need for high end technology and complex mathematical models, yet has structural principles of load flow at the highlighted methods core. Similar to how graphical statics assisted earlier architects and engineers to arrive at form by relating form and forces, this thesis suggests a method of form finding that relates the flow of stresses within solid masses to possible load-bearing façades. Looking to nature, where an abundance of efficient structural solutions can be found, this thesis focuses on a tree-like structural form called the dendriform. In doing so, this thesis explores the idea that through an understanding of typical load flow patterns and the removal of minimally stressed material of the solid body, dendriforms can be revealed that qualitatively exemplify load flow yet maintain an architectural aesthetic.
13

Algorithmes par decomposition de domaine et méthodes de discrétisation d'ordre elevé pour la résolution des systèmes d'équations aux dérivées partielles. Application aux problèmes issus de la mécanique des fluides et de l'électromagnétisme

Dolean, Victorita 07 July 2009 (has links) (PDF)
My main research topic is about developing new domain decomposition algorithms for the solution of systems of partial differential equations. This was mainly applied to fluid dynamics problems (as compressible Euler or Stokes equations) and electromagnetics (time-harmonic and time-domain first order system of Maxwell's equations). Since the solution of large linear systems is strongly related to the application of a discretization method, I was also interested in developing and analyzing the application of high order methods (such as Discontinuos Galerkin methods) to Maxwell's equations (sometimes in conjuction with time-discretization schemes in the case of time-domain problems). As an active member of NACHOS pro ject (besides my main afiliation as an assistant professor at University of Nice), I had the opportunity to develop certain directions in my research, by interacting with permanent et non-permanent members (Post-doctoral researchers) or participating to supervision of PhD Students. This is strongly refflected in a part of my scientific contributions so far. This memoir is composed of three parts: the first is about the application of Schwarz methods to fluid dynamics problems; the second about the high order methods for the Maxwell's equations and the last about the domain decomposition algorithms for wave propagation problems.
14

Time-Reversible Maxwell's Demon

Skordos, P. A. 01 September 1992 (has links)
A time-reversible Maxwell's demon is demonstrated which creates a density difference between two chambers initialized to have equal density. The density difference is estimated theoretically and confirmed by computer simulations. It is found that the reversible Maxwell's demon compresses phase space volume even though its dynamics are time reversible. The significance of phase space volume compression in operating a microscopic heat engine is also discussed.
15

Hybrid Solvers for the Maxwell Equations in Time-Domain

Edelvik, Fredrik January 2002 (has links)
The most commonly used method for the time-domain Maxwell equations is the Finite-Difference Time-Domain method (FDTD). This is an explicit, second-order accurate method, which is used on a staggered Cartesian grid. The main drawback with the FDTD method is its inability to accurately model curved objects and small geometrical features. This is due to the Cartesian grid, which leads to a staircase approximation of the geometry and small details are not resolved at all. This thesis presents different ways to circumvent this drawback, but still take advantage of the benefits of the FDTD method. An approach to avoid staircasing errors but still retain the efficiency of the FDTD method is to use a hybrid grid. A few layers of unstructured cells are used close to curved objects and a Cartesian grid is used for the rest of the domain. For the choice of solver on the unstructured grid two different alternatives are compared: an explicit Finite-Volume Time-Domain (FVTD) solver and an implicit Finite-Element Time-Domain (FETD) solver. The hybrid solvers calculate the scattering from complex objects much more efficiently compared to using FDTD on highly resolved Cartesian grids. For the same accuracy in the solution roughly a factor of 10 in memory requirements and a factor of 20 in execution time are gained. The ability to model features that are small relative to the cell size is often important in electromagnetic simulations. In this thesis a technique to generalize a well-known subcell model for thin wires, in order to take arbitrarily oriented wires in FETD and FDTD into account, is proposed. The method gives considerable modeling flexibility compared to earlier methods and is proven stable. The results show excellent consistency and very good accuracy on different antenna configurations. The recursive convolution method is often used to model frequency dispersive materials in FDTD. This method is used to enable modeling of such materials in the unstructured FVTD and FETD solvers. The stability of both solvers is analyzed and their accuracy is demonstrated by computing the radar cross section for homogeneous as well as layered spheres with frequency dependent permittivity.
16

On a third-order FVTD scheme for three-dimensional Maxwell's Equations

Kotovshchikova, Marina 12 January 2016 (has links)
This thesis considers the application of the type II third order WENO finite volume reconstruction for unstructured tetrahedral meshes proposed by Zhang and Shu in (CCP, 2009) and the third order multirate Runge-Kutta time-stepping to the solution of Maxwell's equations. The dependance of accuracy of the third order WENO scheme on the small parameter in the definition of non-linear weights is studied in detail for one-dimensional uniform meshes and numerical results confirming the theoretical analysis are presented for the linear advection equation. This analysis is found to be crucial in the design of the efficient three-dimensional WENO scheme, full details of which are presented. Several multirate Runge-Kutta (MRK) schemes which advance the solution with local time-steps assigned to different multirate groups are studied. Analysis of accuracy of three different MRK approaches for linear problems based on classic order-conditions is presented. The most flexible and efficient multirate schemes based on works by Tang and Warnecke (JCM, 2006) and Liu, Li and Hu (JCP, 2010) are implemented in three-dimensional finite volume time-domain (FVTD) method. The main characteristics of chosen MRK schemes are flexibility in defining the time-step ratios between multirate groups and consistency of the scheme. Various approaches to partition the three-dimensional computational domain into multirate groups to maximize the achievable speedup are discussed. Numerical experiments with three-dimensional electromagnetic problems are presented to validate the performance of the proposed FVTD method. Three-dimensional results agree with theoretical and numerical accuracy analysis performed for the one-dimensional case. The proposed implementation of multirate schemes demonstrates greater speedup than previously reported in literature. / February 2016
17

Transformation Optics Relay Lens Design for Imaging from a Curved to a Flat Surface

Wetherill, Julia Katherine, Wetherill, Julia Katherine January 2016 (has links)
Monocentric lenses provide compact, broadband, high resolution, wide-field imaging. However, they produce a curved image surface and have found limited use. The use of an appropriately machined fiber bundle to relay the curved image plane onto a flat focal plane array (FPA) has recently emerged as a potential solution. Unfortunately the spatial sampling that is intrinsic to the fiber bundle relay can have a negative effect on image resolution, and vignetting has been identified as another potential shortcoming of this solution. This thesis describes a metamaterial lens yielding a high-performance image relay from a curved surface to a flat focal plane. Using quasi-conformal transformation optics, a Maxwell's fish-eye lens is transformed into a concave-plano shape. A design with a narrower range of constitutive parameters is deemed more likely to be manufacturable. Therefore, the way in which the particular shape of the concave-plano reimager influences the range of needed constitutive parameters is explored. Finally, image quality metrics, such as spot size and light efficiency, are quantified.
18

Modelování ohřevu tkání v KV diatermii / Model of tissue heating by KV diathermy

Bažantová, Lucie January 2012 (has links)
This thesis deals with the basic theory of the electromagnetic field in the first part and the field interactions with biological tissues. Than describes shortwave diathermy as a technique used for purposes of medical treatment. The aim is to built a model of tissue heating in shortwave diathermy in COMSOL Multiphysics environment, so there is included a description of the programming environment, including the mathematical method that COMSOL uses for calculations. The output of the whole work is a model of the lower limb in the knee part and display the results after his diathermy heating.
19

Using an Adaptation of Maxwell's Model on a 3D Printing Scheduling Problem Considering Infill Density and Layer Height

Hassan, Zachary R. January 2021 (has links)
No description available.
20

Hybrid Methods for Computational Electromagnetics in Frequency Domain

Hagdahl, Stefan January 2005 (has links)
<p>In this thesis we study hybrid numerical methods to be used in computational electromagnetics. The purpose is to address a wide frequency range relative to a given geometry. We also focus on efficient and robust numerical algorithms for computing the so called Smooth Surface Diffraction predicted by Geometrical Theory of Diffraction (GTD). We restrict the presentation to frequency domain scattering problems.</p><p>The hybrid methods consist in combinations of Boundary Element Methods and asymptotic methods. Three hybrids will be presented. One of them has been developed from a theoretical idea to an industrial code. The two other hybrids will be presented mainly from a theoretical perspective.</p><p>To be able to compute the Smooth Surface Diffracted field we introduce a numerical method that is to be used with surface curvature sensitive meshing, complemented with auxiliary data taken from a geometry database. By using two geometry representations we can show first order convergence and we then achieve an efficient and robust numerical algorithm. This numerical algorithm may be an essential part of an GTD implementation which in its turn is a component in the hybrid methods.</p><p>As a background to our new techiniques we will also give short introductions to the Boundary Element Method and the Geometrical Theory of Diffraction from a theoretical and implementational point of view.</p>

Page generated in 0.0442 seconds