• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The growth of murine breast cancer cells in dystrophic mice

Meaney, Mary Patricia 09 November 2011 (has links)
The American Cancer Society predicted that 230,480 women would be diagnosed with, and 39,520 women would die from breast cancer (BC) in the United States in 2011. While the incidence of female BC has been decreasing, BC remains the second leading cause of cancer death among women in the United States. Cancer cachexia, the cancer-related loss of muscle, affects up to 25% of BC patients and is associated with poor prognosis and decreased quality of life. Alterations to the dystrophin glycoprotein complex (DGC), a transmembrane, multi-subunit protein complex with structural and signaling roles, have been reported in mammary tumors of BC patients and skeletal muscles of cachectic cancer patients. However, this complex is most frequently studied for its role in Duchenne muscular dystrophy (DMD), a severe, progressive muscle wasting disease. Despite the similar alterations reported in these diseases, it is unclear whether alterations in the DGC in one tissue can impact the progression of disease in another. Purpose: The purpose of the studies described in this dissertation was to identify differences in body composition, energy expenditure and plasma cytokine content between the C57BL/10ScSn-Dmdmdx/J (mdx) mouse model of DMD and C57BL/10ScSnJ (BL/10) control mice and to determine whether systemic alteration of the DGC (as observed in the mdx mouse) alters the growth of E0771 murine mammary tumors. Results: There were differences in body composition and plasma cytokine profiles between mdx and BL/10 mice. We also found that, relative to controls, the tumor–induced increase in cytokines that promote invasion and metastasis was not as severe in mdx mice. Conclusions: This study revealed several differences between mdx and BL/10 mice and provides support for the suggestion that the mdx mouse may not be an accurate model of DMD. In addition, the improved cytokine profile of tumor-bearing mdx mice suggests that the acute phase of DMD may be protective against BC invasion and metastasis. Further research should confirm this effect and determine whether alterations in the DGC of the mdx mouse are directly or indirectly responsible. / Ph. D.
2

Exploring Dystrophin-Mediated Control of Neural Stem Cell Fate Associated with Intellectual Disability In Duchenne Muscular Dystrophy Patients

Thompson, Shannon 13 September 2018 (has links)
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disease characterized by progressive muscle-wasting and loss of mobility. One-third of patients with DMD are also affected by cognitive impairments such as a lower than average IQ and impaired working memory, comorbid with neuropsychiatric disorders such as anxiety and autism-related behaviours. DMD is caused by mutations in the DMD gene resulting in the deletion of the full-length dystrophin protein (Dp427) and, dependent on mutation, other dystrophin isoforms. These isoforms are predominantly found in the brain and deletion may impact on cognition. The most commonly used animal model to study DMD is the mdx mouse which completely lacks Dp427 but no other DMD isoforms. Although the muscle phenotype is well-established, behavioural characterization of the mdx mouse model has been inconclusive. In this thesis I investigated the hippocampal and amygdala cellular and behavioural phenotypes of the mdx mouse. I show that post-natal neural stem-like cell division in the SGZ is altered in the absence of Dp427 resulting in enhanced symmetric division. I show in vitro that primary mdx cultures are fewer and smaller than wild-type, consistent with an increase in symmetrical self-renewal whereas secondary cultures are fewer and larger, consistent with a shift in symmetric division producing transit-amplifying type 2a daughter cells. I next characterized the mdx mouse model using a battery of behavioural tests. Data presented here show that mdx mice do not exhibit an anxious phenotype, do not display autism-related behaviours, and do not display impairments in and spatial learning or memory. However, associative learning, as measured in the fear conditioning paradigm is enhanced in mdx mice. Lastly, I attempted to generate three different brain-specific dystrophin knock-out mouse models to examine role of other dystrophin isoforms. While none of the models were able to deplete dystrophin from brain, given the inverse relationship between Cre-mediated efficiency and the genetic distance of the loxP sites in the fDMDH mouse employed, I do provide important insight into the presence and absence of the muscle-specific enhancers in constructs commonly used to generate brain-specific mouse models. Taken together, this thesis provides converging evidence to indicate that loss of Dp427 impacts on fear associative learning and stem-cell like division in the SGZ but likely does not underlie the non-progressive cognitive impairments affecting one-third of all DMD patients.
3

Etude de thérapies génique et pharmacologique visant à restaurer les capacités cognitives d’un modèle murin de la Dystrophie musculaire de Duchenne / Gene and pharmacological therapies to restore cognitive abilities of a mouse model of Duchenne muscular Dystrophy

Perronnet, Caroline 21 January 2011 (has links)
L’objectif était d’évaluer l’efficacité de thérapies développées pour traiter la dystrophie musculaire de Duchenne (DMD, due à des mutations du gène de la dystrophine) dans la restauration de déficits cognitifs associés à ce syndrome. Deux pistes thérapeutiques visant à compenser les altérations cérébrales liées à la perte de dystrophine ont été explorées chez les souris mdx, modèle de DMD. Une approche pharmacologique basée sur la surexpression de l’utrophine, homologue de la dystrophine, n’améliore pas les déficits comportementaux des souris mdx. Par contre, une intervention génique basée sur l’épissage de l’exon muté conduit à la restauration d’une dystrophine endogène et une récupération d’altérations cérébrales comme l’agrégation des récepteurs GABAA et la plasticité synaptique hippocampique. Ceci suggère un rôle de la dystrophine dans la plasticité du cerveau adulte et l’applicabilité de cette approche de thérapie génique au traitement des altérations cognitives de la DMD. / Therapies have been developed to treat Duchenne muscular dystrophy (DMD, due to mutation in the dystrophin gene), but their ability to restore the cognitive deficits associated with this syndrome has not been yet studied. We explored two therapeutic approaches to compensate for the brain alterations resulting from the loss of dystrophin in the mdx mouse, a model of DMD. A pharmacological approach based on the overexpression of utrophin, a dystrophin homologue, does not alleviate the behavioural deficits in these mice. In contrast, a genetic intervention based on the splicing of the mutated exon leads to the restoration of endogenous dystrophin and a recovery of brain alterations such as the clustering of GABAA receptors and hippocampal synaptic plasticity in mdx mice. These results suggest a role for dystrophin in adult brain plasticity and indicate that this gene therapy approach is applicable to the treatment of cognitive impairments in DMD.
4

NaV1.5 Modulation: From Ionic Channels to Cardiac Conduction and Substrate Heterogeneity

Raad, Nour 16 January 2014 (has links)
No description available.

Page generated in 0.0644 seconds