• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 59
  • 59
  • 47
  • 29
  • 28
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

APPLICATION OF NANOPOROUS MATERIALS IN MECHANICAL SYSTEMS

Kong, Xinguo 05 October 2006 (has links)
No description available.
22

NONLINEAR DYNAMICS CHARACTERIZATION OF BIDIRECTIONAL SEISMIC RESPONSE OF STEEL BRIDGE PIERS / 鋼製橋脚の2方向地震応答の非線形動力学的特性分析

Liu, Yanyan 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21090号 / 工博第4454号 / 新制||工||1692(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 五十嵐 晃, 教授 澤田 純男, 教授 KIM Chul-Woo / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
23

Triboelectric nanogenerators

Chen, Jun 27 May 2016 (has links)
With the threatening of global warming and energy crises, searching for renewable and green energy resources with reduced carbon emissions is one of the most urgent challenges to the sustainable development of human civilization. In the past decades, increasing research efforts have been committed to seek for clean and renewable energy sources as well as to develop renewable energy technologies. Mechanical motion ubiquitously exists in ambient environment and people’s daily life. In recent years, it becomes an attractive target for energy harvesting as a promising supplement to traditional fuel sources and a potentially alternative power source to battery-operated electronics. Until recently, the mechanisms of mechanical energy harvesting are limited to transductions based on piezoelectric effect, electromagnetic effect, electrostatic effect and magnetostrictive effect. Widespread usage of these techniques is likely to be shadowed by possible limitations, such as structure complexity, low power output, fabrication of high-quality materials, reliance on external power sources and little adaptability on structural design for different applications. In 2012, triboelectric nanogenerator (TENG), a creative invention for harvesting ambient mechanical energy based on the coupling between triboelectric effect and electrostatic effect has been launched as a new and renewable energy technology. The concept and design presented in this thesis research can greatly promote the development of TENG as both sustainable power sources and self-powered active sensors. And it will greatly help to define the TENG as a fundamentally new green energy technology, featured as being simple, reliable, cost-effective as well as high efficiency.
24

Biomass Energy Systems and Resources in Tropical Tanzania

Wilson, Lugano January 2010 (has links)
<p>Tanzania has a characteristic developing economy, which is dependent on agricultural productivity.  About 90% of the total primary energy consumption of the country is from biomass.  Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply.  However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal.  Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing.  For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed.  Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 – 6.5 kWh/m<sup>2</sup>), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy.  Ongoing exploration work also reveals that the country has an active system of petroleum and uranium.  On the other hand, after commissioning the 229km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry.</p><p> </p><p>Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive.  This calls for putting in place sustainable energy technologies, like gasification, for their harnessing.  The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar.</p><p> </p><p>This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania.  Particularly, the work aimed at establishing characteristic properties of selected biomass feedstock from Tanzania.  The characteristic properties are necessary input to thermochemical process designers and researchers.  Furthermore, since the properties are origin-specific, this will provide baseline data for technology transfer from north to south.  The characteristic properties that were established were chemical composition, and thermal degradation behaviour.  Furthermore, laboratory scale high temperature gasification of the biomasses was undertaken.</p><p> </p><p>Chemical composition characteristics was established to palm waste, coffee husks, cashew nut shells (CNS), rice husks and bran, bagasse, sisal waste, jatropha seeds, and mango stem.  Results showed that the oxygen content ranged from 27.40 to 42.70% where as that of carbon and hydrogen ranged from 35.60 to 56.90% and 4.50 to 7.50% respectively.  On the other hand, the elemental composition of nitrogen, sulphur and chlorine was marginal.  These properties are comparable to findings from other researchers.  Based on the results of thermal degradation characteristics, it was evident that the cashew nut shells (CNS) was the most reactive amongst the analyzed materials since during the devolatilization stage the first derivative TG (DTG) peak due to hemicellulose degradation reached (-5.52%/minute) compared palm stem whose first peak was -4.81%/minute.  DTG first peak for the remaining materials was indistinct.</p><p> </p><p>Results from the laboratory gasification experiments that were done to the coffee husks showed that gasification at higher temperature (900°C) had an overall higher gasification rate.  For instance, during the inert nitrogen condition, 7% of coffee husk remained for the case of 900°C whereas the residue mass for the gasification at 800 and 700°C was 10 and 17% respectively.  Steam injection to the biomass under high temperature gasification evolved the highest volumetric concentration of carbon monoxide.  The CO peak evolution at 900°C steam only was 23.47 vol. % CO whereas that at 700°C was 21.25 vol. % CO.  Comparatively, the CO peaks for cases without steam at 900°C and 2, 3, and 4% oxygen concentrations were 4.59, 5.93, and 5.63% respectively.  The reaction mechanism of coffee husks gasification was highly correlated to zero reaction order exhibiting apparent activation energy and the frequency factor 161 kJ/mol and 3.89x10<sup>4</sup>/minute respectively.</p> / QC 20100923
25

Study of data of a wind farm

Montoya Moyá, Joan January 2009 (has links)
<p>Nowadays, due to global warming and the depletion of petroleum reserves, renewable energies have gained special prominence. At the moment, wind energy is the most successful renewable energy resource, and the technology to convert this wind energy into electricity has been very developed. As a consequence, the costs per kWh of generation have decreased and it has become a competitive alternative for conventional fossil-fuel power plants to generate electricity.However, a lot of factors and variables are involved in wind power generation. In the first part of this document, some of this factors like the Betz limit, the classification of wind turbines and its components, and the power curve of a wind turbine are explained.In the second part, the performance of a real wind farm is studied. The wind farm is called Es Milà, and it is located in an island called Minorca, in Spain.Firstly, a description of this wind farm and the energy and electricity in Minorca is made.Then, with meteorological and power data of 2007 a thorough study of its performance is completed. In this study, first of all some meteorological aspects like wind direction, wind velocity and its distribution are discussed.After that, the study focuses on electricity production, looking at the power curve, at the expected and the real production, and trying to explain a little of the reactive power.</p>
26

Alternatives to the replacement of an electrical heating system

Schumm, Robert, Maier, Christoph January 2008 (has links)
<p>The aim of this master thesis project is to make an energy survey for a group</p><p>of apartments and suggestions to change the heating system from electricity to a more</p><p>efficient one. There are in total 73 flats in 21 buildings. All flats are separated in several</p><p>houses from two to five flats in one building. There are two different kinds of flats. One</p><p>with three rooms in one floor, in the following referred to as ‘flat A’ and the other one</p><p>with four rooms in two floors, in the following referred to as ‘flat B’. [1]</p><p>In the area there are also two buildings for the commonalty. In these buildings there are a</p><p>shelter and several common rooms like a storage and a laundry. In our work these two</p><p>buildings are not included because they are used by everyone inside the community and</p><p>we could not obtain exact values for the used electricity and the water consumption. So</p><p>our work is specialised only on the residential houses.</p><p>The first part of this thesis contains the energy balance for the different kinds of flats to</p><p>see how much energy they consume for heating and hot tap water. To get theses values</p><p>we have to analyse the total energy flow into one flat and compare it with the energy</p><p>which is used because of transmission losses, ventilation losses, hot tap water, electricity</p><p>for the household and natural ventilation and infiltration.</p><p>The total energy consumption for flat A is about 19000 kWh per year and in flat B about</p><p>23200 kWh per year. But the electricity which is used and has to be bought is about</p><p>15600 kWh per year in flat A flat and 17600 kWh in flat B. The rest of the energy is from</p><p>so called free heat caused by solar radiation and internal heat generation. [1]</p><p>These numbers for the electricity need in one year create annual costs of about</p><p>20000 SEK in flat A and 22500 SEK in flat B. To reduce these costs it is necessary to</p><p>know where this energy goes and for what it is used.</p><p>The important parts of the energy balance for this thesis are the transmission losses, the</p><p>losses caused by natural ventilation and infiltration and the used energy for hot tap water.</p><p>The losses caused by mechanical ventilation have also a significant value, but they would</p><p>only affect the new heating system if the ventilation system would be connected to the</p><p>new system. And the electricity used in the household for electrical devices can only be</p><p>changed by the consumer himself. The part which is affecting the energy costs for the</p><p>transmission and natural ventilation losses and the hot tap water sums up to 9240 kWh per</p><p>year in flat A and flat B. This causes costs of about 10000 SEK per year.</p><p>To reduce these costs it is necessary to change the actual heating system. In the following</p><p>we analyse the saving potentials with a change to an air-water heat pump or with a</p><p>connection to the local district heating network.</p><p>The costs which can be saved with the installation of a heat pump sum up to about</p><p>7000 SEK per year. The installation costs are about 100000 SEK to 125000 SEK</p><p>depending on the different proposed models. If you consider that the existing electrical</p><p>boiler has to be changed anyway in the next years the investment costs for the</p><p>combination with a heat pump decreases. The payback time is then between 9½ and</p><p>13½ years. With assumed increasing electricity prices of 5 % each year the payback time</p><p>decreases to 8½ to 11 years.</p><p>With a connection of each flat to the local district heating network the energy costs for</p><p>heating and hot tap water decreases to 3200 SEK per year. Although the price per kWh for</p><p>district heating is much lower than for electricity the costs are not decreasing a lot</p><p>because of a high annual fixed fee of 7100 SEK. The saved money per year sums up to</p><p>300 SEK and 1000 SEK depending on the electricity contract. The payback time for this</p><p>alternative is between 50 and up to 160 years.</p><p>An alternative to the exchange of the heating and hot water system is to change the actual</p><p>heat exchanger of the ventilation system. With this measure the energy consumption can</p><p>be reduced with less investment costs. The investment costs for a new heat exchanger are</p><p>about 35000 SEK, including a new exhaust hood from the kitchen outwards to reduce the</p><p>contamination of the filters in the heat exchanger. [1]</p><p>The payback time ranges from 13 years in flat A to 21 years in flat B.</p>
27

Gulf of Mexico Loop Current Mechanical Energy and Vorticity Response to a Tropical Cyclone

Uhlhorn, Eric W. 20 April 2008 (has links)
The ocean mixed layer response to a tropical cyclone within, and immediately adjacent to, the Gulf of Mexico Loop Current is examined using a combination of ocean profiles and a numerical model. A comprehensive set of temperature, salinity, and current profiles acquired from aircraft-deployed expendable probes is utilized to analyze the three-dimensional oceanic energy and circulation evolution in response to Hurricane Lili's (2002) passage. Mixed-layer temperature analyses show that the Loop Current cooled <1 degree C in response to the storm, in contrast to typically observed larger decreases of 3-5 degrees C. Correspondingly, vertical current shears, which are partly responsible for entrainment mixing, were found to be up to 50% weaker, on average, than observed in previous studies within the directly-forced region. The Loop Current, which separates the warmer, lighter Caribbean Subtropical water from the cooler, heavier Gulf Common water, was found to decrease in intensity by -0.18 plus/minus 0.25 m/s over an approximately 10-day period within the mixed layer. Contrary to previous tropical cyclone ocean response studies which have assumed approximately horizontally homogeneous ocean strucutre prior to storm passage, a kinetic energy loss of 5.8 plus/minus 6.3 kJ/m^2, or approximately -1 wind stress-scaled energy unit, was observed. Using near-surface currents derived from satellite alimetery data, the Loop Current is found to vary similarly in magnitude, suggesting storm-generated energy is rapidly removed by the pre-exiting Loop Current. Further examination of the energy response using an idealized numerical model reveal that due to: 1) favorable coupling between the wind stress and pre-existing current vectors; and 2) wind-driven currents flowing across the large horizontal pressure gradient; wind energy transfer to mixed-layer kinetic energy can be more efficient in these regimes as compared to the case of an initially horizontally homogeneous ocean. However, nearly all of this energy is removed by advection by 2 local inertial periods after storm passage, and little evidence of the storm's impact remains. Mixed-layer vorticity within the idealized current also shows a strong direct response, but little evidence of an near-inertial wave wake results.
28

Alternatives to the replacement of an electrical heating system

Schumm, Robert, Maier, Christoph January 2008 (has links)
The aim of this master thesis project is to make an energy survey for a group of apartments and suggestions to change the heating system from electricity to a more efficient one. There are in total 73 flats in 21 buildings. All flats are separated in several houses from two to five flats in one building. There are two different kinds of flats. One with three rooms in one floor, in the following referred to as ‘flat A’ and the other one with four rooms in two floors, in the following referred to as ‘flat B’. [1] In the area there are also two buildings for the commonalty. In these buildings there are a shelter and several common rooms like a storage and a laundry. In our work these two buildings are not included because they are used by everyone inside the community and we could not obtain exact values for the used electricity and the water consumption. So our work is specialised only on the residential houses. The first part of this thesis contains the energy balance for the different kinds of flats to see how much energy they consume for heating and hot tap water. To get theses values we have to analyse the total energy flow into one flat and compare it with the energy which is used because of transmission losses, ventilation losses, hot tap water, electricity for the household and natural ventilation and infiltration. The total energy consumption for flat A is about 19000 kWh per year and in flat B about 23200 kWh per year. But the electricity which is used and has to be bought is about 15600 kWh per year in flat A flat and 17600 kWh in flat B. The rest of the energy is from so called free heat caused by solar radiation and internal heat generation. [1] These numbers for the electricity need in one year create annual costs of about 20000 SEK in flat A and 22500 SEK in flat B. To reduce these costs it is necessary to know where this energy goes and for what it is used. The important parts of the energy balance for this thesis are the transmission losses, the losses caused by natural ventilation and infiltration and the used energy for hot tap water. The losses caused by mechanical ventilation have also a significant value, but they would only affect the new heating system if the ventilation system would be connected to the new system. And the electricity used in the household for electrical devices can only be changed by the consumer himself. The part which is affecting the energy costs for the transmission and natural ventilation losses and the hot tap water sums up to 9240 kWh per year in flat A and flat B. This causes costs of about 10000 SEK per year. To reduce these costs it is necessary to change the actual heating system. In the following we analyse the saving potentials with a change to an air-water heat pump or with a connection to the local district heating network. The costs which can be saved with the installation of a heat pump sum up to about 7000 SEK per year. The installation costs are about 100000 SEK to 125000 SEK depending on the different proposed models. If you consider that the existing electrical boiler has to be changed anyway in the next years the investment costs for the combination with a heat pump decreases. The payback time is then between 9½ and 13½ years. With assumed increasing electricity prices of 5 % each year the payback time decreases to 8½ to 11 years. With a connection of each flat to the local district heating network the energy costs for heating and hot tap water decreases to 3200 SEK per year. Although the price per kWh for district heating is much lower than for electricity the costs are not decreasing a lot because of a high annual fixed fee of 7100 SEK. The saved money per year sums up to 300 SEK and 1000 SEK depending on the electricity contract. The payback time for this alternative is between 50 and up to 160 years. An alternative to the exchange of the heating and hot water system is to change the actual heat exchanger of the ventilation system. With this measure the energy consumption can be reduced with less investment costs. The investment costs for a new heat exchanger are about 35000 SEK, including a new exhaust hood from the kitchen outwards to reduce the contamination of the filters in the heat exchanger. [1] The payback time ranges from 13 years in flat A to 21 years in flat B.
29

Feasibility Study for a Wind Power Project in Sri Lanka : a Minor Field Study

Furulind, Johan, Berg, Johan January 2008 (has links)
This report covers a feasibility study for a wind power project in Sri Lanka. Three potential sites for a wind farm are presented, out of which the Ambewela Cattle Farm is chosen as the most suitable. Limitations of a wind farm at the site, due to properties of the electrical grid and logistical issues, are examined and costs related to installing the wind farm are estimated. The maximum capacity of a wind farm is calculated to 45 MW. The payback period of the wind farm is calculated to 4.4 years. Environmental benefits of the wind farm are estimated in terms of avoided CO2-emissions, which are calculated to 76 000 metric tonnes per year. The study concludes that a wind power project at the chosen site should be technically and financially feasible, if a wind turbine that matches certain logistical criteria can be found.
30

MIND - Modelling in Industry for Increased Energy Efficiency and Reduced Greenhouse Gas Emissions

Sasu-Boakye, Yaw January 2010 (has links)
In industry, energy efficiency reduces system cost and emissions to the environment. Energy audits are carried out in industry to identify measures that would increase energy efficiency. However, the usual case is that low-cost measures are implemented while capital intensive measures receive less attention possibly due to, example, inadequate information available to study risks involved. Decisions support tools have been identified as a means of supporting complex production related investment decision. The aim of this paper is to investigate profitability and potential global CO2 emission reduction of energy conversion investments in a small energy intensive industry by using an optimisation method as a decision support tool. The investments are evaluated using consistent future energy market scenarios with interdependent parameters. An optimisation model is developed with reMIND optimisation tool which is used to optimise the system cost of each scenario. The reduction in system cost and global CO2 emissions of the new investments and results from sensitivity analysis are evaluated to determine the optimal investment solution. In the report, it is established that optimisation methods provide a structured means of studying the risk involved in capital intensive investments. The optimisation results show that investment in a small-scale steam turbine combined heat and power production is a profitable and robust investment. The net reduction of global CO2 emission is substantial compared with the reference system. Furthermore, it is shown that biofuel policies alone may not make cost intensive biofuel investments attractive, further reduction in investment cost is required. The energy savings and global CO2 emission reductions achieved in this study can play an important role in achieving the aims of the European Union to reduce greenhouse gas emissions by 20% and save 20 % of energy by the year 2020.

Page generated in 0.2476 seconds