21 |
[en] EXPERIMENTAL STUDY OF CANTILEVER BEAMS UNDER AXIAL IMPACTS / [pt] ESTUDO ESPERIMENTAL DE VIGAS EM BALANÇO SOB IMPACTOS AXIAISJAIME TUPIASSU PINHO DE CASTRO 27 September 2011 (has links)
[pt] Este estudo é uma investigação experimental das vibrações flexurais de uma viga em balanço causadas por impactos axiais.Uma série de medidas foi feita usando-se uma viga de aço inoxidável submetida a impactos de diferentes magnitudes,aplicados através de um arranjo massa-pêndulo. A amplitude dos impulsos foi variada mudando-se o peso e o ângulo de lançamento da massa do pêndulo. Para a gama e a característica dos impactos utilizados nesta investigação,concluímos que a amplitude dos impulsos aplicados é o parâmetro relevante da resposta transversal da viga. As máximas tensões de flexão e os máximos deslocamentos laterais relacionam-se linearmente com a amplitude dos impulsos axiais aplicados.Não foi observada nenhuma instabilidade dinâmica,no sentido de deslocamentos laterais excessivos, na gama de impulsos utilizados nessa pesquisa. / [en] This study is an experimental investigation of the dynamic response of a cantilever beam due to axial impact. A series of response measurements were made for a cantilevered stainless steel beam subjected to impulses of different magnitudes.The impulses were produced by a pendulum-impact mass arrangement and their magnitudes were varied by changing the weight and release angle of the pendulum mass. For the range and character of impulses utilized in this investigation,it is concluded that magnitude of the applied impulse is the relevant parameter for the transverse response of the beam.Moreover,both maximum bending stresses in the beam and its maximum lateral displacements were found to be linearly related to the magnitude of the applied axial impulses. No dynamic instabilities,in the sense of excessive lateral displacements of the beam, was observed for the range of impulse magnitudes selected here.
|
22 |
Mechanické testování pájených spojů / Machanical testing of solder jointsDrab, Tomáš January 2012 (has links)
The project contains theoretical research of electrotechnical manufacture for lead-free reflow soldering. It contains characterization of soldering processes. Includes variations of solder paste printing, principles of part placing and also reflow soldering process. The project appoints possibilities of testing solder joints strength, mainly focused on mechanical vibrations. It describes a design and preparation of solder joint strength test methods by mechanical vibrations. It compares influence of vibrations on part types and solder alloys.
|
23 |
Harvesting Mechanical Vibrations using a Frequency Up-converterFakeih, Esraa 04 1900 (has links)
With the rise of wireless sensor networks and the internet of things, many sensors are being developed to help us monitor our environment. Sensor applications from marine animal tracking to implantable healthcare monitoring require small and non-invasive methods of powering, for which purpose traditional batteries are considered too bulky and unreasonable. If appropriately designed, energy harvesting devices can be a viable solution. Solar and wind energy are good candidates of power but require constant exposure to their sources, which may not be feasible for in-vivo and underwater applications. Mechanical energy, however, is available underwater (the motion of the waves) and inside our bodies (the beating of the heart). These vibrations are normally low in frequency and amplitude, thus resulting in a low voltage once converted into electrical signals using conventional mechanical harvesters. These mechanical harvesters also suffer from narrow bandwidth, which limits their efficient operation to a small range of frequencies. Thus, there is a need for a mechanical energy harvester to convert mechanical energy into electrical energy with enhanced output voltage and for a wide range of frequencies. In this thesis, a new mechanical harvester is introduced, and two different methods of rectifying it are investigated.
The designed harvester enhances the output voltage and extends the bandwidth of operation using a mechanical frequency up-convertor. This is implemented using magnetic forces to convert low-frequency vibrations to high-frequency pulses with the help of a piezoelectric material to generate high output voltage. The results show a 48.9% increase in the output voltage at 12.2Hz at an acceleration of 1.0g, and a bandwidth increase from 0.23Hz to 11.4Hz.
For the rectification, mechanical rectifiers are discussed, which would obviate the need for electrical rectification, thus preventing the losses normally caused by the threshold voltage of electronics. Two designs of mechanical rectifiers are investigated and implemented on the frequency up-converter: a static rectifier and a rotating rectifier. The results show a voltage rectification, which required a sacrifice in the bandwidth and boosted voltage.
|
24 |
Development of Laboratory Apparatus for Fundamental Damping StudiesDouglas, Julie A. January 2014 (has links)
No description available.
|
25 |
Vibrations of mechanical structures: source localization and nonlinear eigenvalue problems for mode calculationBaker, Jonathan Peter 19 May 2023 (has links)
This work addresses two primary topics related to vibrations in structures. The first topic is the use of a spatially distributed sensor network for localization of vibration events. I use a received signal strength (RSS) framework that presumes exponential energy decay with distance to the source. I derive the Cramér-Rao bound (CRB) for this parameter estimation problem, with the unknown parameters being source location, source intensity, and the energy dissipation rate. In this framework, I show that the CRB matches the variance of maximum likelihood estimators (MLEs) in more computationally expensive Monte Carlo trials. I also compare the CRB to the results of physical experiments to test the power of the CRB to predict spatial areas where MLEs show practical evidence of being ill-conditioned. Supported by this evidence, I recommend the CRB as a simple measure of localization accuracy, which may be used to optimize sensor layouts before installation. I demonstrate how this numerical optimization may be performed for some regions of interest with simple geometries.
The second topic investigates modal vibrations of multi-body structures built from simple one-dimensional elements, with networks of elastic strings as the primary example. I introduce a method of using a nonlinear eigenvalue problem (NLEVP) to express boundary conditions of the vibrating elements so that the (infinitely many) eigenvalues of the full structure are the eigenvalues of the finite-dimensional NLEVP. The mode shapes of the structure can then be recovered in analytic form (not as a discretization) from the corresponding eigenvectors of the NLEVP. I show some advantages of this method over dynamic stiffness matrices, which is another NLEVP framework for modal analysis. In numerical experiments, I test several contour integration solvers for NLEVPs on sample problems generated from string networks. / Doctor of Philosophy / This work deals with two primary topics related to vibrations in structures. The first topic is the use of vibration sensors to detect movement or impact and to estimate the location of the detected event. Sensors that are close to the event will record a larger amount of energy than the sensors that are farther away, so comparing the signals of several sensors can approximately establish the event location. In this way, vibration sensors might be used to monitor activity in a building without the use of intrusive cameras. The accuracy of location estimates can be greatly affected by the relative positions of the sensors and the event. Generally, location estimates tend to be most accurate if the sensors closely surround the event, and less accurate if the event is outside of the sensor zone. These principles are useful, but not precise. Given a framework for how event energy and noise are picked up by the sensors, the Cramér-Rao bound (CRB) is a formula for the achievable accuracy of location estimates. I demonstrate that the CRB is usefully similar to the location estimate accuracy from experimental data collected from a volunteer walking through a sensor-rigged hallway. I then show how CRB computations may be used to find an optimal arrangement of sensors. The match between the CRB and the accuracy of the experiments suggests that the sensor layout that optimizes the CRB will also provide accurate location estimates in a real building.
The other main topic is how the vibrations of a structure can be understood through the structure's natural vibration frequencies and corresponding vibration shapes, called the "modes" of the structure. I connect vibration modes to the abstract framework of "nonlinear eigenvalue problems" (NLEVPs). An NLEVP is a square matrix-valued function for which one wants to find the inputs that make the matrix singular. But these singular matrices are usually isolated---% distributed among the infinitely many matrices of the NLEVP in places that are difficult to predict. After discussing NLEVPs in general and some methods for solving them, I show how the vibration modes of certain structures can be represented by the solutions of NLEVPs. The structures I analyze are multi-body structures that are made of simple interconnected pieces, such as elastic strings strung together into a spider web. Once a multi-body structure has been cast into the NLEVP form, an NLEVP solver can be used to find the vibration modes. Finally, I demonstrate that this method can be computationally faster than many traditional modal analysis techniques.
|
26 |
Modelagem e análise de geradores aeroelásticos híbridos piezelétrico-indutivos para conversão de energia do escoamento em eletricidade / Modeling and analysis of hybrid piezoelectric-inductive generators for converting flow energy into electricityDias, José Augusto de Carvalho 14 March 2014 (has links)
A exploração de fenômenos aeroelásticos dinâmicos visando à conversão de energia do escoamento em eletricidade tem recebido crescente atenção nos últimos anos. As aplicações se estendem desde estruturas aeroespaciais até a alimentação de sistemas eletrônicos sem fio e diferentes mecanismos de transdução têm sido utilizados. O uso de um aerofólio é uma abordagem conveniente e escalável para criar instabilidades e oscilações persistentes para coleta aeroelástica de energia. Este trabalho tem por objetivo avaliar configurações alternativas de aerofólio para a coleta de energia do escoamento. As análises abrangem as versões lineares e não lineares de geradores aeroelásticos de energia baseados em aerofólio com dois (2GDL) e com três graus de liberdade (3GDL) que utilizam transdução piezelétrica e eletromagnética separadamente e também simultaneamente. Em todos os casos o acoplamento eletroaeroelástico é adicionado ao grau de liberdade de flexão do aerofólio e um circuito elétrico externo utilizado para cada tipo de mecanismo de transdução. As equações adimensionais que governam o sistema eletroaeroelástico são apresentadas para cada caso e uma carga resistiva é considerada no domínio elétrico para a previsão da potência gerada. Inicialmente, as previsões do modelo piezoaeroelástico linear com 2GDL são verificadas a partir de resultados experimentais obtidos em ensaios em túnel de vento na condição de flutter. Posteriormente, no primeiro estudo de caso, o comportamento eletroaeroelástico da seção típica com 2GDL é investigado, na velocidade de flutter, variando-se parâmetros aeroelásticos e eletromecânicos. No segundo estudo de caso, uma não linearidade do tipo freeplay é adicionada ao grau de liberdade de rotação da seção típica de 2GDL. Neste caso, a seção típica é estudada na velocidade mais baixa na qual o sistema apresenta oscilações em ciclo limite para diversas configurações de parâmetros aeroelásticos e eletromecânicos. As oscilações não lineares em ciclo limite podem ser obtidas abaixo da velocidade linear de flutter. Finalmente, o comportamento eletroaeroelástico de uma seção típica linear com 3GDL é estudado segundo a variação de diferentes parâmetros. Em todos os estudos de caso, a potência gerada e a amplitude dos GDLs mecânicos são investigadas. Com o estudo, é possível localizar regiões ótimas de parâmetros adimensionais as quais propiciam um aumento da potência elétrica de saída com velocidades de escoamento aceitáveis. Uma vez escalável, é possível redimensionalizar o modelo e manufaturá-lo. / The exploration of dynamic aeroelastic phenomena for converting wind energy into low-power electricity has received growing attention in the last years. Applications extend from aerospace structures to wireless electronic systems. The use of an airfoil is a convenient approach to create instabilities and persistent oscillations for flow energy harvesting. In this work, the goal is to establish alternative configurations of the airfoil for flow energy harvesting. The analysis presented here covers linear and nonlinear versions of aeroelastic energy generators based on an airfoil with two degrees of freedom and three degrees of freedom using piezoelectric and electromagnetic transduction separately and simultaneously. Both forms of coupling are added to the plunge degree of freedom in the presence of a separate electrical load for each type of transduction. The governing coupled dimensionless electroaeroelastic equations are given with a resistive load in each electrical domain to predict system behavior. First, the model predictions are compared with experimental data obtained in wind tunnel tests under flutter condition validating the model for the case of two degrees of freedom and piezoelectric coupling. After, in the first case study the typical section with two and three degrees of freedom is studied at the linear flutter speed for several aeroelastic and electromechanical parameters configurations. In the second case of study a freeplay non-linearity is added to the rotational degree of freedom of the two degree of freedom typical section. In this case, the typical section is studied at the lowest flow speed at which the system presents limit cycle oscillations for different aeroelastic and electromechanical system parameters. The non-linear limit cycle oscillations may be obtained below the linear flutter speed. In both cases, the power generation is analyzed as well as the maximum displacements of the mechanical degrees of freedom. With this study, it is possible to locate the favorable dimensionless parameter regions that give maximum electrical power output as well as reasonable airflow speeds. In this scalable problem, the results can be used for design and fabrication of optimal airfoil-based flow energy harvesters.
|
27 |
Effects of superelastic shape memory springs on the aeroelastic behavior of a typical airfoil section: passive vibration attenuation and energy harvesting applications / Efeitos de molas com memória de forma superelásticas no comportamento aeroelástico de uma seção típica: aplicações em atenuação passiva de vibrações e coleta de energiaSousa, Vagner Candido de 27 June 2016 (has links)
The modeling, analysis and experimental verification of a two-degree-of-freedom typical aeroelastic section with superelastic shape memory alloy springs are presented. The focus is to investigate the effects of the phase transformation of the shape memory alloy springs on the flutter and post-flutter behaviors of the typical section. The shape memory alloy phase transformation kinetics is described by a modified version of well-known phenomenological models. The shape memory alloy spring model is based on classical spring design (with the pure shear assumption) and modified to account for the nonlinear effects of phase transformation. The cross-section of the shape memory alloy wire is represented by a linear radial distribution of shear strain and nonlinear radial distributions of shear stress and martensitic fraction. The equations of motion of a linear typical section are modified to include the shape memory alloy springs. A linear unsteady aerodynamic model is employed to determine the aerodynamic loads. The proposed model is cast into state-space representation and solved with a Runge-Kutta method. It is numerically and experimentally shown that the phase transformation of shape memory alloy springs can be effectively exploited to enhance the aeroelastic behavior of a typical section by replacing unstable flutter oscillations by stable oscillations of acceptable amplitudes over a range of airflow speeds, providing a useful method of passive aeroelastic control. Since the modified aeroelastic behavior is attractive for wind energy harvesting purposes, electromechanical coupling is also modeled in the plunge degree-of-freedom along with a resistive load in the electrical domain for electrical power estimation. The exploitation of the shape memory alloy phase transformation is more attractive for airfoil-based wind energy harvesting performance than the use of typical concentrated nonlinearities (e.g., hardening steel) in terms of enhanced electrical power output. / A modelagem, análise e verificação experimental de uma seção típica aeroelástica com dois graus de liberdade e molas com memória de forma superelásticas são apresentadas. O foco é investigar os efeitos da histerese pseudoelástica das molas com memória de forma nos comportamentos de flutter e pós-flutter da seção típica. A cinética das transformações de fase nas molas com memória de forma é descrita por uma versão modificada de modelos fenomenológicos amplamente conhecidos. O modelo de molas helicoidais com memória de forma é baseado em teoria clássica de molas (com a hipótese de cisalhamento puro) e modificado para representar os efeitos não lineares de transformação de fase. A seção transversal do fio da mola com memória de forma é representada por uma distribuição radial e linear de deformações de cisalhamento e por distribuições radiais e não lineares de tensões cisalhantes e de frações martensíticas. As equações de movimento de uma seção típica linear são modificadas para incluir as molas com memória de forma. Um modelo aerodinâmico linear não estacionário é utilizado para se determinar as cargas aerodinâmicas. O modelo proposto é representado em espaço de estados e resolvido com um método Runge-Kutta. Mostra-se, numérica e experimentalmente, que a histerese pseudoelástica de molas com memória de forma pode ser efetivamente explorada para melhorar o comportamento aeroelástico de uma seção típica ao transformar oscilações instáveis de flutter em oscilações estáveis e de amplitudes aceitáveis em uma faixa de velocidades do escoamento, provendo um método útil de controle aeroelástico passivo. Como o comportamento aeroelástico modificado (pela histerese pseudoelástica) é atrativo para a coleta de energia do escoamento, um acoplamento eletromecânico é modelado no grau de liberdade de deslocamento linear, juntamente com uma carga resistiva no domínio elétrico do problema para se estimar a potência elétrica gerada. A exploração da histerese pseudoelástica das molas com memória de forma é mais atrativa para a performance da coleta aeroelástica de energia do que o uso de não linearidades concentradas típicas (como o enrijecimento não linear do aço) em termos de melhoria na potência elétrica gerada.
|
28 |
Análise computacional do comportamento dinâmico de um sistema vibro-impacto / Computational analysis of the dynamic behavior of a vibro-impact systemLourenço, Rodrigo Francisco Borges [UNESP] 24 January 2017 (has links)
Submitted by RODRIGO FRANCISCO BORGES LOURENÇO null (rodrigoborges@unirv.edu.br) on 2017-02-09T19:40:07Z
No. of bitstreams: 1
Rodrigo Borges - Finalizado.pdf: 3257098 bytes, checksum: c3df8350bb0c44864dd0a646a065458f (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-14T16:25:05Z (GMT) No. of bitstreams: 1
lourenco_rfb_me_ilha.pdf: 3257098 bytes, checksum: c3df8350bb0c44864dd0a646a065458f (MD5) / Made available in DSpace on 2017-02-14T16:25:05Z (GMT). No. of bitstreams: 1
lourenco_rfb_me_ilha.pdf: 3257098 bytes, checksum: c3df8350bb0c44864dd0a646a065458f (MD5)
Previous issue date: 2017-01-24 / São diversos os equipamentos de engenharia que apresentam vibrações mecânicas, e estas podem ser observadas em forma de acelerações, deslocamentos e velocidade. Os primeiros estudos envolvendo vibrações foram direcionados aos fenômenos naturais e modelagem matemática de sistemas vibrantes, então, começou a aplicação desses estudos em equipamentos de engenharia. Vibrações mecânicas, na maioria dos sistemas dinâmicos, são consideradas como algo indesejado e podem ser danosos. Porém, existem situações que são utilizadas para melhorar o funcionamento e desempenho de máquinas. São diversas as causas de vibrações em sistemas de engenharia, neste trabalho, destaca-se as vibrações causadas por impacto. Quando componentes destes sistemas impactam entre si, causando ruídos de curta duração, são caracterizados como sistemas tipo vibro - impacto. Podem ser citados diversos equipamentos com essas características, como rolos compactadores de solo, martelos de impacto, perfuratrizes de solo, etc. Neste trabalho, demonstra-se o comportamento dinâmico de um sistema vibro – impactante. Para análise deste sistema, foram desenvolvidos códigos computacionais, através do software Octave. No diagrama de estabilidade de Lyapunov, verificou-se que, pontualmente o sistema se apresenta de forma estável. A partir da variação da frequência de excitação, foi observado através dos históricos no tempo, espectros de frequência, mapas de Poincaré e planos de fase, um comportamento periódico e estável, com situações diversas de respostas. Ao analisar a evolução temporal dos expoentes de Lyapunov, para todas as condições de velocidade e deslocamento impostas, o sistema se apresentou de forma caótica. Implementou-se um controlador linear ótimo ao sistema, afim de atenuar as vibrações nas regiões de operação nas quais o sistema é instável. Comprovou-se que a estratégia de controle linear ótimo (LQR, do inglês Linear Quadratic Regulator) demonstra eficiência para este tipo de situação e pode ser utilizada na redução de danos, evitando prejuízos econômicos, perdas biológicas e materiais. / There are several engineering equipment’s that present mechanical vibrations, and these can be observed in the form of displacement, acceleration, and speed. The first studies involving were directed to the natural phenomena and mathematical modeling of vibrations systems, then the application of these studies began in engineering equipment. In most dynamic systems Mechanical vibrations are considered to be unwanted and can be harmful. However, there are situations that are used to improve the operation and performance of machines. There are several causes of vibrations in engineering systems. In this work, the vibrations caused by impact are highlighted. For components of these systems impacting each other, causing short - term noise, they are characterized as vibro-impact systems. Various equipment with these characteristics can be mentioned, such as soil compacting rollers, impact hammers, soil drills, etc. In this work the dynamic behavior of a vibro-impacting system is demonstrated. For the computational analysis of this system, were implemented codes using the software Octave. In the Lyapunov stability diagram, is was verified that, the system presents is stable. From the variation of the excitation frequency, a periodic and stable behavior was observed through time histories, frequency spectrump, poincaré maps and phase planes, with different situations of responses. When analyzing the time evolution of the Lyapunov is exponents, for all imposed conditions of velocity and displacement, the system appeared chaotic. An optimum linear controller was implemented in the system in order to attenuate the vibrations in the operating regions in which the system is unstable. It was verified that the Linear Quadratic Regulator (LQR) demonstrates efficiency for this type of situation and it can be used to reduce damages, avoiding economic, biological, and material losses.
|
29 |
Análise computacional do comportamento dinâmico de um sistema vibro-impacto /Lourenço, Rodrigo Francisco Borges January 2017 (has links)
Orientador: Fábio Roberto Chavarette / Resumo: São diversos os equipamentos de engenharia que apresentam vibrações mecânicas, e estas podem ser observadas em forma de acelerações, deslocamentos e velocidade. Os primeiros estudos envolvendo vibrações foram direcionados aos fenômenos naturais e modelagem matemática de sistemas vibrantes, então, começou a aplicação desses estudos em equipamentos de engenharia. Vibrações mecânicas, na maioria dos sistemas dinâmicos, são consideradas como algo indesejado e podem ser danosos. Porém, existem situações que são utilizadas para melhorar o funcionamento e desempenho de máquinas. São diversas as causas de vibrações em sistemas de engenharia, neste trabalho, destaca-se as vibrações causadas por impacto. Quando componentes destes sistemas impactam entre si, causando ruídos de curta duração, são caracterizados como sistemas tipo vibro - impacto. Podem ser citados diversos equipamentos com essas características, como rolos compactadores de solo, martelos de impacto, perfuratrizes de solo, etc. Neste trabalho, demonstra-se o comportamento dinâmico de um sistema vibro – impactante. Para análise deste sistema, foram desenvolvidos códigos computacionais, através do software Octave. No diagrama de estabilidade de Lyapunov, verificou-se que, pontualmente o sistema se apresenta de forma estável. A partir da variação da frequência de excitação, foi observado através dos históricos no tempo, espectros de frequência, mapas de Poincaré e planos de fase, um comportamento periódico e estável, com sit... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
30 |
Concepção e análise dinâmica de sistema com controle de mancal adaptativo incorporando molas LMF. / Analisys and design of a system with control of adaptative bearing using SMA springs.OLIVEIRA, Andersson Guimarães. 10 April 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-04-10T18:33:46Z
No. of bitstreams: 1
ANDERSSON GUIMARÃES OLIVEIRA – DISSERTAÇÃO (PPGEM) 2017.pdf: 7033521 bytes, checksum: 309c4388940437a24da0b294b0476d2e (MD5) / Made available in DSpace on 2018-04-10T18:33:46Z (GMT). No. of bitstreams: 1
ANDERSSON GUIMARÃES OLIVEIRA – DISSERTAÇÃO (PPGEM) 2017.pdf: 7033521 bytes, checksum: 309c4388940437a24da0b294b0476d2e (MD5)
Previous issue date: 2017-12-19 / Capes / Dentre as diversas fontes de vibração das máquinas rotativas, existe uma que decorre da ressonância entre a frequência natural da máquina e velocidade de rotação em um dado instante. Dependendo das dimensões do sistema rotativo e forças envolvidas, os efeitos decorrentes dessa ressonância podem ser danosos. A solução clássica para mitigar tal efeito é evitar que a máquina opere em frequências próximas à sua frequência natural ou projetá-la de tal modo que sua frequência de ressonância esteja acima da frequência de operação. Contudo, para situações onde as duas soluções supracitadas não se aplicam, uma alternativa é permitir que ocorra variação nos parâmetros da máquina com o intuito de ajustar sua frequência natural dinamicamente. Portanto, este trabalho propõe o uso de mancais de rigidez variável ao qual se denomina mancais adaptativos. Esses mancais utilizam elementos de máquina que empregam a tecnologia de ligas com memória de forma (LMF), valendo-se da capacidade que essas ligas possuem de mudar a rigidez em função da temperatura. Para tanto, foi projetado, caracterizado e testado um protótipo de mancal adaptativo empregando molas de NiTi. O protótipo sofreu ensaios dinâmicos em uma bancada didática de dinâmica da rotação, instalada no Laboratório de Vibrações e Instrumentação do Programa de Pós-Graduação em Engenharia Mecânica da UFCG. Foram obtidos resultados satisfatórios, tanto na variação da rigidez, como no tempo de resposta a partir das melhorias empregadas nos sistemas de aquecimento e resfriamento do dispositivo. / Among of many rotating machinery vibration sources, there are one that is due to resonance between natural machine frequency and rotating speed in a specific moment. Depending on rotating system dimensions and envolved forces, the effects due this resonance can make damages. The classical solution to mitigate this effect is avoid that machine operates in frequencies near from natural frequency or design it for your natural frequency been far from it operation frequency. However, for situations where there two solutions can´t be applied, an alternative is enable that the machine parameters changes to adjust the natural frequency of machine dynamically.This study proposes the use of variable stiffness bearing known as adaptative bearing. These bearings uses machine elements that apply SMA technology, which the possibility to change stiffness due temperature changes. So, was designed, characterized and tested a prototype at Laboratory of Vibration and Instrumentation of Mechanical Engineering Post Graduate UFCG Program. It was obtained satisfactory results relates to stiffness variation and response time due improvements on heating and cooling systems.
|
Page generated in 0.1225 seconds