51 |
Projeto, otimização e análise de incertezas de um dispositivo coletor de energia proveniente de vibrações mecânicas utilizando transdutores piezelétricos e circuito ressonante / Design, optimization and uncertainty analysis of a mechanical vibration energy harvesting device using piezoelectric transducers and resonant circuitTatiane Corrêa de Godoy 05 November 2012 (has links)
O uso de materiais piezelétricos no desenvolvimento de dispositivos para o aproveitamento de energia provinda de vibrações mecânicas, Energy Harvesting, tem sido largamente estudado na última década. Materiais piezelétricos podem ser encontrados na forma de finas camadas ou pastilhas, sendo facilmente integradas a estruturas sem aumento significativo de massa. A conversão de energia mecânica em energia elétrica se dá graças ao acoplamento eletromecânico dos materiais piezelétricos. A maioria das publicações encontradas na literatura exploram o uso de dispositivos eletromecânicos ressonantes, sintonizados na frequência de operação da estrutura, maximizando assim, a energia elétrica de saída dada uma certa condição de operação. O desempenho desses dispositivos ressonantes para coletar e armazenar energia é altamente dependente da adequada sintonização da sua frequência de ressonância com a frequência de operação do sistema/estrutura. Este trabalho apresenta o projeto, otimização e análise de incertezas de um dispositivo coletor/armazenador de energia que consiste em uma placa sob duas condições de contorno, engastada-livre (EL) e deslizante-livre (DL), com massa sísmica e materiais piezelétricos conectados a um circuito shunt. Um modelo em elementos finitos de placa laminada piezelétrica conectada a circuitos R e RL é utilizado combinando as teorias de camada equivalente e deformação de cisalhamento de primeira ordem. A disposição/quantidade de material piezelétrico bem como a massa sísmica acoplados à estrutura foram otimizadas utilizando-se um Algoritmo Genético, levando em conta análises mecânica (modelo mecânico, geometria, peso) e elétrica (modelo elétrico, circuito armazenador). Além disso, o efeito de incertezas dos parâmetros dielétrico e piezelétrico do transdutor, e da indutância elétrica ligada em série ao circuito coletor/armazenador de energia foi estudado. Os resultados indicam que a inclusão de uma indutância sintética ao circuito pode melhorar a coleta de energia em uma banda de frequência e, ainda, que a otimização geométrica pode reduzir a quantidade de material piezelétrico sem no entanto diminuir significativamente a energia gerada. / The use of piezoelectric materials in the development of devices to harvest energy from mechanical vibrations (Energy Harvesting) has been widely studied in the last decade. Piezoelectric materials can be found in the form of thin layers or patches easily integrated into structures without significant mass increase. The conversion of mechanical energy into electric power is provided by the electromechanical coupling of piezoelectric materials. Most publications in the literature explore the use of resonant electromechanical devices, tuned to the operating frequency of the host structure, thus maximizing the power output given a certain operating condition. The performance of these resonant devices to harvest and store energy is highly dependent on the proper tuning of its resonance frequency with the operation frequency of the system/structure. This work presents a design, optimization and uncertainty analysis of energy harvester device consisting of a plate with tip mass and piezoelectric materials connected to shunt circuits. Two boundary conditions are used for the plate, cantilever (EL) and sliding-free (DL). A coupled finite element model with R and RL circuits, combining equivalent single layer and first order shear deformation theories, was used. The distribution and volume of piezoelectric material and the tip mass coupled to the structure were optimized using a Genetic Algorithm, accounting for both mechanical (mechanical model, geometry, weight) and electric (electric model, storer circuit) analyses. Furthermore, the effect of uncertainties of transducer dielectric and piezoelectric constants and electric inductance connected in series with harvesting circuit was studied. The results indicate that the inclusion of a synthetic inductance can improve energy harvesting performance over a frequency range and also that the geometric optimization may reduce the piezoelectric material volume without diminishing significantly the harvested energy.
|
52 |
Poly-Vinylidene Fluoride Based Vibration Spectrum Sensors and Energy HarvestorsNyayapati, Mahidhar Ramesh January 2014 (has links) (PDF)
Mechanical vibrations in large structures such as buildings, bridges, dams and critical frequencies in large machinery generally have low frequencies (100Hz-1000Hz). To monitor large areas of such structures we need huge network of low cost, easily manufacturable, self-powered and stand-alone vibration spectrum sensors. The sensors should also consume very little power during their overall operation cycle and have moderately high frequency resoultion.
The thesis provides mathematical analysis, design and development of stand-alone, low frequency vibration spectrum analyzer .A mechanically stretched polymer piezoelectric membrane, which has a fixed length and tension, can act as a single frequency detector due to its unique resonant frequency. Stretching multiple ribbons of diffferent lengths and tensions, a vibration spectrum analyzer, which gives the Fourier frequency components present in an arbitrary mechanical input vibration, can be designed. The thesis presents a detailed description of experiments to evaluate a low frequency vibration spectrum analyzer system that accepts an incoming input vibration and directly provides the spectrum as output. Polymer piezoelectric materials being easily manufacturable these sensors can be deployed in wide area sensor networks that monitor large structures.
The thesis also shows design of a vibration energy harvesting system based on the concept of harvesting energy at low frequencies. The need for developing such an energy harvesting system arises from the necessity of making the vibration sensor, self-powered. Multiple experimental tests were performed before developing a prototype vibration energy harvesting circuit.
|
53 |
Frequency domain methods for the analysis of time delay systemsOtto, Andreas 19 August 2016 (has links) (PDF)
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method.
The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions.
In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling. / In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können.
Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird.
Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden.
|
54 |
Frequency domain methods for the analysis of time delay systemsOtto, Andreas 06 July 2016 (has links)
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method.
The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions.
In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling.:1. Introduction
2. System definition and equivalent systems
3. Analysis of nonlinear time delay systems
4. Analytical solution of linear time delay systems
5. Frequency domain approach
6. Hill-Floquet method
7. Applications
8. Concluding remarks
A Appendix / In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können.
Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird.
Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden.:1. Introduction
2. System definition and equivalent systems
3. Analysis of nonlinear time delay systems
4. Analytical solution of linear time delay systems
5. Frequency domain approach
6. Hill-Floquet method
7. Applications
8. Concluding remarks
A Appendix
|
Page generated in 0.127 seconds