• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 134
  • 67
  • 2
  • Tagged with
  • 408
  • 247
  • 160
  • 147
  • 147
  • 147
  • 147
  • 125
  • 91
  • 75
  • 46
  • 36
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Analyse und Berechnung von Uhrwerkskomponenten in mechanischen Kleinuhren

Röseler, Benjamin 14 December 2015 (has links)
Die steigende Nachfrage nach mechanischen Kleinuhren und deren monopolhafte, meist in Schweizer Unternehmen erfolgte Fertigung der Uhrenkomponenten, führten zu einem stetig zunehmenden Interesse, historisch gewachsene handwerkliche Vorgaben und Vorschriften zu hinterfragen. Genauere Fertigungstechnologien, die Verwendung neuerer Materialien und die Möglichkeit des Einsatzes heutiger Rechentechnik bei der Auslegung und Qualitätssicherung, welche beispielsweise in der Feinwerktechnik, dem Maschinenbau oder der Fahrzeugtechnik seit Jahren Stand der Technik sind, führen zu Forschungsaufgaben mit der Möglichkeit, ermittelte theoretische Ergebnisse mit reichlich handwerklichen Erfahrungen der Uhrmacher zu stützen. Das Interesse, die Funktionsweise der einzelnen Teilsysteme im Uhrwerk genau zu analysieren, Möglichkeiten der Anpassung sowohl fertigungsbedingt als auch wirkungsgrad- und genauigkeitssteigernd aufzuzeigen und zu definieren führte zur Anfertigung dieser Arbeit. Mit dieser Arbeit wird ein Beitrag geschaffen, welcher das systematische Vorgehen bei der Analyse und der Berechnung der Uhrwerkskomponenten Räderwerk und Schweizer Ankerhemmung beschreibt. Es werden theoretische Untersuchungen aufgeführt, Optimierungsparameter herausgestellt und Messungen an realen Uhrwerken durchgeführt, insbesondere zur Validierung der theoretischen Untersuchungen. Mit der Auswertung der Messergebnisse werden Möglichkeiten gezeigt, geometrische und kinematische Problemstellungen zu identifizieren und gezielt anzupassen.
212

Two new distinct mechanisms drive epithelial folding in Drosophila wing imaginal discs

Sui, Liyuan 22 March 2018 (has links)
Epithelial folding is an important morphogenetic process that is essential in transforming simple sheets of cells into complex three-dimensional tissues and organs during animal development (Davidson, 2012). Epithelial folding has been shown to rely on constriction forces generated by the apical actomyosin network (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). However, the contributions of mechanical forces acting along lateral and basal cell surfaces to epithelial folding remain poorly understood. Here we combine live imaging with force measurements of epithelial mechanics to analyze the formation of two epithelial folds in the Drosophila larval wing imaginal disc. We show that these two neighboring folds form via two distinct mechanisms. These two folds are driven either by decrease of basal tension or increase of lateral tension, none of them depends on apical constriction. In the first fold, a local decrease in extracellular matrix (ECM) density in prefold cells results in a reduction of mechanical tension on the basal cell surface, leading to basal expansion and fold formation. Consistent with that, a local reduction of ECM by overexpression of Matrix metalloproteinase II is sufficient to induce ectopic folding. In the second fold a different mechanism is at place. Here basal tension is not different with neighboring cells, but pulsed dynamic F-actin accumulations along the lateral interface of prefold cells lead to increased lateral tension, which drives cell shortening along the apical-basal axis and fold formation. In this thesis I described two distinct mechanisms driving epithelial folding, both basal decrease and lateral increase in tension can generate similar morphological changes and promote epithelial folding in the Drosophila wing discs. / Die Faltung von Epithelien ist ein wichtiger morphogenetischer Prozess, der die Entstehung komplexer, dreidimensionaler Gewebe und Organe aus einfachen Zellschichten ermöglicht (Davidson, 2012). Es ist bekannt, dass Kräfte erzeugt durch das apikale Aktomyosin-Netzwerk wichtig sind für die erfolgreiche Faltung von Epithelien (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). Die Rolle von mechanischen Kräften, die entlang der lateralen und basalen Seite wirken, ist jedoch kaum verstanden. Wir verbinden Lebendmikroskopie mit der Messung von mechanischen Eigenschaften, um die Entstehung von 2 Epithelfalten in den Imaginalscheiben von Drosophila zu verstehen. Wir können dadurch zeigen, dass die beiden Falten durch unterschiedliche Mechanismen entstehen. Sie entstehen entweder durch eine Verringerung der Spannung auf der basalen Seite oder durch eine Erhöhung der Spannung auf der lateralen Seite, aber keine von beiden entsteht durch zusammenziehende Kräfte auf der apikalen Seite. Die erste Falte entsteht durch eine lokale Verringerung der extrazellulären Matrix in den Vorläuferzellen, was zu einer Reduktion der Spannung auf der basalen Seite und zur Ausbildung der Falte führt. Die zweite Falte wird durch einen anderen Mechanismus ausgebildet. Hier ist nicht die Spannung auf der basalen Seite reduziert sondern dynamische Anreicherungen von F-Aktin auf der lateralen Seite resultieren in einer erhöhten lateralen Spannung, die zu einer Verkürzung der Zellen und damit zur Ausbildung einer Falte führt. In meiner Arbeit zeige ich 2 neue Mechanismen zur Entstehung von Epithelfalten auf, durch Absenken der Spannung auf der basalen oder Erhöhen auf der lateralen Seite.
213

Research on the mechanical properties of the sand cast magnesium alloy AZ91

Erchov, Serguei 20 December 2001 (has links)
In dieser Arbeit wurden die mechanischen Eigenschaften der Magnesiumsandgusslegierung AZ91 in Abhängigkeit von den Prozessparametern untersucht. Es wurde gezeigt, dass durch die Anwendung von Filtration, Kornfeinung und Wärmebehandlung das Niveau der mechanischen Eigenschaften des Sandgusses dem des Druckgusses angepasst werden kann. In dieser Arbeit wurde außerdem der Einfluss der Prozessparameter auf die Spannungsrelaxations- und Dämpfungseigenschaften untersucht.
214

Besonderheiten der mechanischen Eigenschaften und der Mikrostruktur dünner, polykristalliner Kupferschichten

Weihnacht, Volker 14 December 2001 (has links)
Den Kern der Untersuchungen bildete die Messung der mechanischen Spannungen in dünnen Kupferschichten während thermischer Zyklen und nach Belastung durch Vierpunktbiegung. Parallel dazu wurden Charakterisierungen der Korngröße, der Textur und korninnerer Defekte, inbesondere von Versetzungen durchgeführt. Bei den Spannungsmessungen fielen folgende Besonderheiten auf: (i) höhere Festigkeiten mit abnehmender Schichtdicke, (ii) hohe Verfestigungsraten bei der Abkühlung, (iii) Asymmetrie der Fließspannungen in Zug- und Druckrichtung und (iv) hohe Spannungen bei hohen Temperaturen. Da die klassischen Plastizitätsmodelle diese Besonderheiten zu erklären vermögen, wurden zwei neue Modelle entwickelt. Das erste beschreibt eine effektive Verfestigung auf der Basis elastischer Wechselwirkungen zwischen mobilen Versetzungen und sich an der Schicht/Substrat-Grenzfläche ansammelnder Versetzungen. Das zweite Modell bezieht sich auf das Korngrenzendiffusionskriechen und erklärt dessen Behinderung durch die unvollständige laterale elastische Relaxation auf einem Substrat haftender Körner. Das gesamte thermomechanische Verhalten kann nur aus dem Zusammenwirken verschiedener strukturbildender und Plastizitäts-Mechanismen beschrieben werden.
215

Nano-Design von Bornitridgrenzschichten zur Optimierung von kohlenstofffaserverstärktem Magnesium

Reischer, Franz 01 December 2006 (has links)
Die Längsbiegefestigkeit von kohlenstofffaserverstärktem Reinmagnesium konnte durch eine geeignete Nanostrukturierung der Bornitridgrenzschichten von 1140 auf 1620 MPa erhöht werden. Diese optimale Nanostrukturierung zeichnet sich dadurch aus, dass die atomaren Basisebenen des hexagonalen Bornitrids an den Grenzflächen zu den C-Faserfilamenten parallel zu deren Oberfläche verlaufen und an der Grenzfläche zur Matrix turbostratisch verknäult sind, wodurch einerseits an der inneren Grenzfläche die Haftung moderat eingestellt wird und andererseits an der äußeren Grenzfläche eine gute mechanische Verzahnung zwischen Schicht und Matrix besteht. Somit lässt diese Texturierung mikromechanische Versagensprozesse zu, wie z. B. energiedispersives Filamentdebonding und Abbau von Spannungskonzentrationen an den Rissspitzen, die eine weitgehende Nutzung der hohen Faserfestigkeit im Verbund ermöglichen.
216

Verhalten von Geokunststoffbewehrungen unter zyklischer Beanspruchung

Retzlaff, Jan 30 November 2007 (has links)
Eines der Hauptanwendungsgebiete von Geokunststoffen ist der Verkehrswegebau. Hier haben sich neben Trenn- und Filterlagen Geokunststoffbewehrungen etabliert. Ihr Zugkraft-Dehnungsverhalten hat Einfluss auf die Nutzungsdauer des Fahrbahnaufbaus. Dort wo diese Geokunststoffe zyklischen Beanspruchungen durch den Verkehr ausgesetzt sind, ist grundsätzlich von einem Einfluss auf das Zugkraft-Dehnungsverhalten auszugehen. Somit ist es erforderlich, die zyklischen Einwirkungen bei der Ermittlung der Bemessungszugfestigkeit von Geokunststoffen für derartige Anwendungen zu berücksichtigen. Die Arbeit stellt dafür ein praktikables Verfahren vor. Auf der Basis polymertypischer Merkmale, die sich in den Zugkraft-Dehnungskurven widerspiegeln, wurde eine Kombination aus zyklischen Zugversuchen und chemischen Analysen untersucht, die es erlaubt, ohne die sehr aufwendig zu ermittelnden Wöhler- bzw. Smith-Diagramme Aussagen zum Verhalten der Geokunststoffe für die im Verkehrswesen relevanten Lastwechselzahlen zu machen.
217

Bond behavior of lightweight steel fibre-reinforced concrete

Ali, Ahsan 20 October 2017 (has links)
This research was undertaken for studying the bond behaviour of Lightweight Fibre-reinforced Concrete (LWFC). Lightweight concrete is inherently weak in tension and has higher brittleness than the conventional concrete. To improve these and other properties, it is generally reinforced with deformed bars and fibres. There are number of studies that favour the use of Steel fibres, however such studies are mainly focused either on normal weight concrete or on the mechanical properties of different concretes. There are also different committee reports and in some cases specific sections of codes that specifically deal with the normal weight fibre-reinforced concrete. However, such is not the case with lightweight fibre-reinforced concrete; there is limited literature available especially on the Bond of lightweight fibre-reinforced concrete. In current research work effect of fibres is studied on the bond behaviour of the lightweight reinforced concrete. Since most of code provisions for bond are based on experimental work originally carried out on conventional concrete, effect of fibres on bond of conventional concrete was therefore also included in present research domain. Main bond tests were carried out using Pull-out test methodology. Test results indicate that the ultimate bond strength of conventional concrete when reinforced with steel fibres increased by 29%. However due to very low density and high porosity of lightweight aggregates, no significant improvement on bond strength of LWFC, as a result of fibres’ addition could be observed. Nevertheless, there is noteworthy improvement in the post-cracking bond strength of LWFC. Besides this, current bond-stress slip law as defined by Model Code 2010 does not reflect the positive effect of fibres, hence some modifications are suggested. It is also found that among the existing code expressions for estimation of bond strength, expression proposed by Model Code 2010 presents better results and its effectiveness can be further increased if fibre factor and factor for lightweight concrete are considered.
218

Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media

Watanabe, Norihiro 23 May 2012 (has links)
Numerical analysis of multi-field problems in porous and fractured media is an important subject for various geotechnical engineering tasks such as the management of geo-resources (e.g. engineering of geothermal, oil and gas reservoirs) as well as waste management. For practical usage, e.g. for geothermal, simulation tools are required which take into account both coupled thermo-hydro-mechanical (THM) processes and the uncertainty of geological data, i.e. the model parametrization. For modeling fractured rocks, equivalent porous medium or multiple continuum model approaches are often only the way currently due to difficulty to handle geomechanical discontinuities. However, they are not applicable for prediction of flow and transport in subsurface systems where a few fractures dominates the system behavior. Thus modeling coupled problems in discretely fractured porous media is desirable for more precise analysis. The subject of this work is developing a framework of the finite element method (FEM) for modeling coupled THM problems in discretely fractured and non-fractured porous media including thermal water flow, advective-diffusive heat transport, and thermoporoelasticity. Pre-existing fractures are considered. Systems of discretely fractured porous media can be considered as a problem of interacted multiple domains, i.e. porous medium domain and discrete fracture domain, for hydraulic and transport processes, and a discontinuous problem for mechanical processes. The FEM is required to take into account both kinds of the problems. In addition, this work includes developing a methodology for the data uncertainty using the FEM model and investigating the uncertainty impacts on evaluating coupled THM processes. All the necessary code developments in this work has been carried out with a scientific open source project OpenGeoSys (OGS). In this work, fluid flow and heat transport problems in interactive multiple domains are solved assuming continuity of filed variables (pressure and temperature) over the two domains. The assumption is reasonable if there are no infill materials in fractures. The method has been successfully applied for several numerical examples, e.g. modeling three-dimensional coupled flow and heat transport processes in discretely fractured porous media at the Gross Schoenebck geothermal site (Germany), and three-dimensional coupled THM processes in porous media at the Urach Spa geothermal site (Germany). To solve the mechanically discontinuous problems, lower-dimensional interface elements (LIEs) with local enrichments have been developed for coupled problems in a domain including pre-existing fractures. The method permits the possibility of using existing flow simulators and having an identical mesh for both processes. It enables us to formulate the coupled problems in monolithic scheme for robust computation. Moreover, it gives an advantage in practice that one can use existing standard FEM codes for groundwater flow and easily make a coupling computation between mechanical and hydraulic processes. Example of a 2D fluid injection problem into a single fracture demonstrated that the proposed method can produce results in strong agreement with semi-analytical solutions. An uncertainty analysis of THM coupled processes has been studied for a typical geothermal reservoir in crystalline rock based on the Monte-Carlo method. Fracture and matrix are treated conceptually as an equivalent porous medium, and the model is applied to available data from the Urach Spa and Falkenberg sites (Germany). Reservoir parameters are considered as spatially random variables and their realizations are generated using conditional Gaussian simulation. Two reservoir modes (undisturbed and stimulated) are considered to construct a stochastic model for permeability distribution. We found that the most significant factors in the analysis are permeability and heat capacity. The study demonstrates the importance of taking parameter uncertainties into account for geothermal reservoir evaluation in order to assess the viability of numerical modeling.
219

Development and reliability quantification of a novel test set-up for measuring footwear bending stiffness

Krumm, Dominik, Schwanitz, Stefan, Odenwald, Stephan 15 March 2022 (has links)
Since footwear flexibility impacts functional design factors, numerous studies have investigated footwear bending stiffness. However, the various methods used to measure footwear bending stiffness have some limitations. Hence, the scope of this study was to develop and quantify the reliability of a novel test set-up for measuring footwear bending stiffness. A test set-up consisting of a hydraulic testing machine, a bending apparatus and a fixation unit was created that fulfilled the requirements specified in the initial phase of the study. The test set-up was evaluated by testing 15 different boots in three series of measurements. Bending stiffness of the boots ranged from 0.61 ± 0.03 Nm/° to 2.38 ± 0.08 Nm/°. Two-way analysis of variance test yielded that the test set-up enabled the reliable measurement of footwear bending stiffness. Relative measurement uncertainty ranged from 1.3 % to 6.1 %.
220

Force Distribution in Macromolecules

Stacklies, Wolfram 02 July 2010 (has links)
All living organisms utilize thousands of molecular building blocks to perform mechanical tasks. These building blocks are mostly proteins, and their mechanical properties define the way they can be utilized by the cell. The spectrum ranges from rope like structures that give hold and stability to our bodies to microscopic engines helping us to perform or sense mechanical work. An increasing number of biological processes are revealed to be driven by force and well-directed distribution of strain is the very base of many of these mechanisms. We need to be able to observe the distribution of strain within bio-molecules if we want to gain detailed insight into the function of these highly complex nano-machines. Only by theoretical understanding and prediction of mechanical processes on the molecular level will we be able to rationally tailor proteins to mimic specific biological functions. This thesis aims at understanding the molecular mechanics of a wide range of biological molecules, such as the muscle protein titin or silk fibers. We introduce Force Distribution Analysis (FDA), a new approach to directly study the forces driving molecular processes, instead of indirectly observing them by means of coordinate changes.

Page generated in 0.1138 seconds