• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 134
  • 67
  • 2
  • Tagged with
  • 408
  • 247
  • 160
  • 147
  • 147
  • 147
  • 147
  • 125
  • 91
  • 75
  • 46
  • 36
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 11 November 2013 (has links)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191 / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191
222

Einfluss einer vorausgegangenen professionellen mechanischen Plaquereduktion auf das Ergebnis der subgingivalen Instrumentierung nach drei Monaten – eine randomisierte klinische Studie

Heusinger, Thea 23 October 2023 (has links)
Eine vorausgegangene professionelle mechanische Plaquereduktion (PMPR) verbesserte nicht die klinischen Ergebnisse der subgingivalen Instrumentierung. Grundsätzlich führte eine zweimalige PMPR zu einer hochsignifikanten Reduktion aller klinischen Variablen. Jedoch ist im Vergleich zu den Resultaten nach alleiniger subgingivaler Instrumentierung die klinische Relevanz als gering einzustufen. Ein zusätzlicher Effekt auf die Biomarker in der Sulkusflüssigkeit und die Parodontitis-assoziierten Bakterien ist ebenfalls nach drei Monaten nicht zu detektieren. Es deutet sich an, eine wiederholte ausführliche Information, Motivation und Instruktion vor der subgingivalen Instrumentierung empfehlen und auf die PMPR mit Entfernung des mineralisierten und nicht mineralisierten Biofilms verzichten zu können.:1. Abkürzungsverzeichnis 2. Einführung 2.1. klinische parodontale Gesundheit & orales Mikrobiom 2.2. Ätiologie der Parodontitis 2.3. Risikofaktoren der Parodontitis 2.4. Epidemiologie der Parodontitis 2.5. Klassifikation parodontaler Erkrankungen und Zustände 2.6. Therapie der Parodontitis 2.7. Prävention einer Parodontitis 3. Aufgabenstellung 4. Materialien und Methoden 4.1. Studienprobanden 4.1.1. Teilnahmekriterien 4.1.2. Anamnese, Aufklärung und Einwilligung 4.1.3. Studiengruppen 4.2. klinischer Ablauf 4.2.1. Vorbehandlungen 4.2.2. nichtinvasive klinisch-parodontologische Untersuchungen 4.2.3. klinische Variablen 4.2.4. professionelle mechanische Plaquereduktion 4.2.5. subgingivale Instrumentierung 4.2.6. Nachsorge 4.3. Labor 4.3.1. Probenentnahme 4.3.2. Analyse der Proben 4.4. statistische Analyse 5. Ergebnisse 6. Diskussion 7. Zusammenfassung 8. Literaturverzeichnis 9. Anlagen 10. Abbildungsverzeichnis 11. Tabellenverzeichnis 12. Erklärung über die eigenständige Abfassung der Arbeit 13. Lebenslauf 14. Verzeichnis der wissenschaftlichen Veröffentlichungen 15. Danksagung
223

Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

Bönisch, Matthias 09 August 2016 (has links) (PDF)
Ti-Nb alloys are characterized by a diverse metallurgy which allows obtaining a wide palette of microstructural configurations and physical properties via careful selection of chemical composition, heat treatment and mechanical processing routes. The present work aims to expand the current state of knowledge about martensite forming Ti-Nb alloys by studying 15 binary Ti-c_{Nb}Nb (9wt.% ≤ c_{Nb} ≤ 44.5wt.%) alloy formulations in terms of their structural and mechanical properties, as well as their thermal stability. The crystal structures of the martensitic phases, α´ and α´´, and the influence of the Nb content on the lattice (Bain) strain and on the volume change related to the β → α´/α´´ martensitic transformations are analyzed on the basis of Rietveld-refinements. The magnitude of the shuffle component of the β → α´/α´´ martensitic transformations is quantified in relation to the chemical composition. The largest transformation lattice strains are operative in Nb-lean alloys. Depending on the composition, both a volume dilatation and contraction are encountered and the volume change may influence whether hexagonal martensite α´ or orthorhombic martensite α´´ forms from β upon quenching. The mechanical properties and the deformation behavior of martensitic Ti-Nb alloys are studied by complementary methods including monotonic and cyclic uniaxial compression, nanoindentation, microhardness and impulse excitation technique. The results show that the Nb content strongly influences the mechanical properties of martensitic Ti-Nb alloys. The elastic moduli, hardness and strength are minimal in the vicinity of the limiting compositions bounding the interval in which orthorhombic martensite α´´ forms by quenching. Uniaxial cyclic compressive testing demonstrates that the elastic properties of strained samples are different than those of unstrained ones. Also, experimental evidence indicates a deformation-induced martensite to austenite (α´´ → β) conversion. The influence of Nb content on the thermal stability and on the occurrence of decomposition reactions in martensitic Ti-Nb alloys is examined by isochronal differential scanning calorimetry, dilatometry and in-situ synchrotron X-ray diffraction complemented by transmission electron microscopy. The thermal decomposition and transformation behavior exhibits various phase transformation sequences during heating into the β-phase field in dependence of composition. Eventually, the transformation temperatures, interval, hysteresis and heat of the β ↔ α´´ martensitic transformation are investigated in relation to the Nb content. The results obtained in this study are useful for the development and optimization of β-stabilized Ti-based alloys for structural, Ni-free shape memory and/or superelastic, as well as for biomedical applications. / Ti-Nb Legierungen zeichnen sich durch eine vielfältige Metallurgie aus, die es nach sorgfältiger Auswahl der chemischen Zusammensetzung sowie der thermischen und mechanischen Prozessierungsroute ermöglicht eine große Bandbreite mikrostruktureller Konfigurationen und physikalischer Eigenschaften zu erhalten. Das Ziel der vorliegenden Arbeit ist es den gegenwärtigen Wissensstand über martensitbildende Ti-Nb Legierungen zu erweitern. Zu diesem Zweck werden 15 binäre Ti-c_{Nb} Nb (9 Gew.% ≤ c_{Nb} ≤ 44.5 Gew.%) Legierungen hinsichtlich ihrer strukturellen und mechanischen Eigenschaften sowie ihrer thermischen Stabilität untersucht. Die Kristallstrukturen der martensitischen Phasen, α´ und α´´, sowie der Einfluss des Nb-Gehalts auf die Gitterverzerrung (Bain-Verzerrung), auf die Verschiebungswellenkomponente (Shuffle-Komponente) und auf die Volumenänderung der martensitischen β → α´/α´´ Transformationen werden anhand von Rietveld-Verfeinerungen analysiert. In Abhängigkeit des Nb-Gehalts tritt entweder eine Volumendilatation oder -kontraktion auf, die bestimmen könnte ob hexagonaler Martensit α´ oder orthorhombischer Martensit α´´ aus β bei Abkühlung gebildet wird. Die mechanischen Eigenschaften und das Verformungsverhalten martensitischer Ti-Nb Legierungen werden mit einer Reihe komplementärer Methoden (monotone und zyklische einachsige Druckversuche, Nanoindentation, Mikrohärte, Impulserregungstechnik) untersucht. Die Ergebnisse zeigen durchgehend, dass die mechanischen Eigenschaften martensitischer Ti-Nb Legierungen stark vom Nb-Gehalt beeinflusst werden. Die mechanischen Kennwerte sind minimal in der Nähe der Zusammensetzungen, innerhalb derer β → α´´ bei Abkühlung auftritt. Aus Druckversuchen geht hervor, dass die elastischen Eigenschaften verformter Proben verschieden zu denen unverformter sind. Die experimentellen Ergebnisse weisen außerdem auf eine verformungsinduzierte Umwandlung von Martensit in Austenit (α´´ → β) hin. Der Einfluss des Nb-Gehalts auf die thermische Stabilität und das Auftreten von Zerfallsreaktionen in martensitischen Ti-Nb Legierungen wird anhand von dynamischer Differenzkalorimetrie, Dilatometrie, und in-situ Synchrotronröntgenbeugung in Kombination mit Transmissionselektronenmikroskopie untersucht. Das thermische Zerfalls- und Umwandlungsverhalten ist durch das Auftreten einer Vielzahl von in Abhängigkeit des Nb-Gehalts unterschiedlichen Phasentransformationssequenzen gekennzeichnet. Abschließend werden die Transformationstemperaturen und -wärmen, das Transformationsinterval und die thermische Hysterese der martensitischen β ↔ α´´ Umwandlung untersucht. Die Ergebnisse dieser Arbeit sind für die Entwicklung und Optimierung β-stabilisierter Ti-Legierungen für strukturelle und biomedizinische Anwendungen sowie Ni-freier Komponenten, die Formgedächtniseffekt und/oder Superelastizität aufweisen, von Nutzen.
224

Load and failure behavior of human muscle samples in the context of proximal femur replacement

Schleifenbaum, Stefan, Schmidt, Michael, Möbius, Robert, Wolfskämpf, Thomas, Schröder, Christian, Grunert, Ronny, Hammer, Niels, Prietzel, Torsten 14 June 2016 (has links) (PDF)
Background: To ensure adequate function after orthopedic tumor reconstruction, it is important to reattach the remaining soft tissue to the implant. This study aimed at obtaining mechanical properties of textile muscle-implant and muscle-bone connections in a preliminary test. Methods: Two groups of soft-tissue attachment were mechanically tested and compared: Native bone-muscle samples obtained from human femora and muscles attached to a prosthetic implant by means of Trevira® attachment tubes. Additionally, muscle samples were tested with muscle fibers aligned parallel and perpendicular to the tension load. A uniaxial load was exerted upon all samples. Results: Failure loads of 26.7 ± 8.8 N were observed for the native bone-muscle group and of 18.1 ± 9.9 N for the Trevira® group. Elongations of 94.8 ± 36.2 % were observed for the native bone-muscle group and 79.3 ± 51.8 % for the Trevira® group. The location of failure was mainly observed in the central area of the muscle fibers. Muscle fibers with parallel fiber orientation (47.6 ± 11.5 N) yielded higher tensile strength than those with perpendicular fiber orientation (14.8 ± 4.1 N). Conclusions: Our experiments showed that higher forces were transmitted in the origin and insertion areas than in areas of flat soft tissue reconstruction using attachment tubes. The data indicate that the tested material allows reattaching muscles, but without reinforcing the insertion site. Therefore, attachment tubes with region-dependent and potentially anisotropic material behavior might be advantageous to optimize muscle-bone load transmission after surgery, which may allow lower complication rates and shorter physical recovery.
225

Effects of active and passive warming of the foot sole on vibration perception thresholds

Schmidt, Daniel, Germano, Andresa M.C., Milani, Thomas L. 28 April 2017 (has links) (PDF)
Objective Skin temperatures are known to increase cutaneous sensitivity. However, it is unclear whether the amount of improved sensitivity differs depending on the protocol of heat application. Therefore, this study aimed to investigate the effects of active (treadmill walking) and passive (infrared radiator) warming of the foot sole on vibration perception thresholds. Methods Sixty healthy and injury-free subjects voluntarily participated in this study. Vibration perception thresholds (200 Hz) and plantar temperatures were measured at the hallux and 1st metatarsal head. In experiment 1, warming and mechanically stimulating the skin was achieved by walking on a treadmill for 30 min. In a follow-up study (experiment 2), external plantar heat was administered via an infrared radiator (30 min). Results In both experiments, increasing temperatures led to increased plantar sensitivity. However, the amount of improved sensitivity was greater in experiment 1, although plantar temperature increases were lower compared to experiment 2. Conclusions Warming in conjunction with mechanical stimulation seems to have a greater potential to enhance plantar sensitivity compared to external heat supply only. Significance The possible influence of mechanical stimulation and warming towards superior plantar afferent feedback highlights its importance regarding human posture and fall prevention.
226

Muskuloskelettale Belastungen: Beitrag zu den mechanischen Rahmenbedingungen der Frakturheilung

Duda, Georg 15 May 2001 (has links)
Eine Analyse der wirkenden Belastungen im intakten als auch frakturierten Knochen liegt bisher nicht vor. Hypothese der vorliegenden Arbeit ist, dass ein besseres Verständnis der mechanischen Beanspruchungen die Basis für eine Optimierung der Rahmenbedingungen der Frakturheilung bildet. Ziel dieser Arbeit ist es, am Beispiel der unteren Extremität die wirkenden Belastungen zu analysieren und für exemplarische Situationen im Hinblick auf ihre Bedeutung für die Frakturheilung zu diskutieren. Ausgehend von ersten validierten Analysen der muskuloskelettalen Belastungen wird auf die Bedeutung der Weichteile für die Beanspruchung langer Röhrenknochen eingegangen. Dem schliessen sich Betrachtungen über die mechanischen Rahmenbedingungen bei der Versorgung von Tibiafrakturen mit unterschiedlichen Osteosyntheseformen an: Unaufgebohrte Marknagelung, interne Fixation und externe Fixation mit Ringfixateur. Abschliessend werden am Beispiel von Messungen der Frakturspaltbewegungen weitere Einflüsse auf die mechanischen Rahmenbedingungen der Heilung diskutiert. Durch die vorliegende Arbeit wird die Bedeutung der ausgeglichenen Muskelaktivität für die mechanischen Rahmenbedingungen der Frakturheilung illustriert. Es werden Grenzindikationen für den Einsatz einzelner Implantate aufgezeigt und mögliche Konzepte für die Nachbehandlung diskutiert. Langfristig werden die aufgezeigten Verfahren in präoperativen Planungen zum Einsatz kommen und beanspruchungsgerechte Osteosynthesen, Umstellungen und Korrekturen des muskuloskelettalen Systems ermöglichen. / Analyses of the loading conditions in intact and fractured long bones are so far not available. The hypothesis of the current work was that a better understanding of the mechanical loading may form the basis for an optimization of the boundary conditions during fracture healing. The goal was to determine the loading conditions in the lower limb and to discuss its significance for fracture healing. Based on a validated analysis of musculo-skeletal loading, the significance of the soft tissues for the mechanical loading conditions is discussed. The mechanical conditions are evaluated in fracture treatment by means of unreamed nailing, internal fixation and external fixation with a ring fixator. Finally, influences on the mechanical boundary conditions during healing are discussed using the example of fracture gap movements in patients treated by the Ilizarov method. The presented work illustrates the importance of the coordinated activity of muscles that leads to a balanced loading condition at the fracture during healing. Critical conditions for the bone as well as for the different implant types are described and possible concepts for a post operative treatment are discussed. In the long term, the demonstrated methods will allow preoperative planing of correction osteotomies and fracture treatment for individual patients and specific clinical situations.
227

Compensating microphonics in SRF cavities to ensure beam stability for future free-electron-lasers

Neumann, Axel 27 November 2008 (has links)
Laser-initiierte Freie Elektronen Laser (FEL) und Energy Recovery Linearbeschleuniger (ERL) erfordern höchste Stabilität der beschleunigten Elektronenpakete. Die zeitliche Streuung der Elektronenpakete und die mittlere Energieabweichung in den Undulatoren sollten in der Grössenordnung von Femtosekunden bzw. im Promille Bereich liegen. Das erfordert eine Regelung der Hochfrequenz (HF) Beschleunigungsfelder in den supraleitenden Hohlraumresonatoren bis zu 0.02° Phasen- und 1e-4 Amplitudengenauigkeit. Die TESLA Resonatoren des 2.3 GeV Linearbeschleunigers des geplanten BESSY-FEL sollen im Dauerstrichbetrieb bei geringer Strahllast betrieben werden. Die HF Resonanzbreite ist folglich sehr schmalbandig und liegt im Bereich von 10 Hertz. Um die erreichbare Feldstabilität zu erfassen, wurden die Resonatoren einem umfangreichen Messprogramm in der HoBiCaT Testanlage unterzogen. Eine Charakterisierung der vollständigen Resonatoreinheit hinsichtlich der mechanischen Verstimmung durch Mikrophonie, statische -und dynamische Lorentzkraftverstimmung, ihrer mechanischen Eigenschaften und HF-System Rauschen erbrachte wichtige Daten, um die zu erwartende Feld -und somit Strahlstabilität im Linac zu simulieren. Die gemessene Mikrophonie betrug 1-5 Hz rms, ist somit eine dominante Fehlergröße und wirkt sich limitierend auf die Strahlstabilität im Linac aus. Um sie zu minimieren, wurden aktive Dämpfungsmethoden entwickelt. Dazu wurden unterschiedliche mechanische Abstimmungssysteme mit integrierten Piezoelementen getestet. Ein adaptiver, vorauskompensierender Regelungsalgorithmus wurde entwickelt, welcher die gemessene Transferfunktion der Abstimmvorrichtung beinhaltet. Damit wurde eine Kompensierung der Mikrophonie um einem Faktor von zwei bis sieben erreicht. Die Einbeziehung dieser Regelung in die Linacsimulationen zeigte, dass diese einen wichtigen Beitrag zur Erreichbarkeit der benötigten Strahlstabilität für zukünftige FELs und ERLs darstellt. / In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radio-frequency (RF) field to an accuracy of 0.02° in phase and up to 1e-4 in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable.
228

Kombinatorisches Compoundieren und mechanische Online-Prüfungen

Barth, Jan 21 May 2013 (has links) (PDF)
Durch das Einbringen von Additiven, Füll- und Verstärkungsstoffen in eine polymere Matrix oder durch das Blenden unterschiedlicher Polymere ist es möglich, die Eigenschaften von Kunststoffen gezielt auf den Anwendungsfall hin zu optimieren. Gerade durch diese „Einstellbarkeit“ der Eigenschaften und infolge ihrer vergleichsweise geringen Dichte verdrängen Kunststoffe zunehmend klassische Werkstoffe und erobern so neue Anwendungsgebiete. Die Entwicklung solcher innovativer Kunststoffrezepturen (Compounds) ist jedoch zeitaufwendig und kostenintensiv. Um die gewünschten Gebrauchseigenschaften des Endproduktes zu erreichen, ist oft eine Vielzahl unterschiedlicher Zusatzstoffe erforderlich; somit werden entsprechende Rezepturen schnell sehr komplex. Bei der klassischen Materialentwicklung wird zumeist nicht erfasst/ermittelt, welche Synergien die einzelnen Bestandteile - positiver oder negativer Art - untereinander haben. Eine gezielte systematische Untersuchung dieser Synergien mit klassischen Methoden ist aus Kosten- und Zeitgründen kaum möglich. Für eine zeitgemäße Materialentwicklung sind daher neue Methoden gefragt, die eine schnelle Rezepturvariation, gepaart mit einem schnellen Eigenschaftsscreening, ermöglichen. Mit der Entwicklung des kombinatorischen Compoundier und High Throughput Screening Systems (CC/HTS-Systems) wurde im Rahmen dieser Arbeit eine, auch industriell einsetzbare, Basisanlage für die schnelle Entwicklung von neuen und innovativen Compoundrezepturen erstellt und hinsichtlich der Übertragbarkeit der Ergebnisse verifiziert. Das CC/HTS-System besteht aus: • einem Doppelschneckenextruder (ZSK 18 MegaLab) Eine entscheidende Besonderheit dieses System resultiert aus der Möglichkeit, die Materialzufuhr und damit die Zusammensetzung über rechnergesteuerte Dosierwaagen kontinuierlich zu verändern. Die im Vergleich zur klassischen Vorgehensweise somit vorhandene schnelle Rezepturänderung ermöglicht es in kürzester Zeit, eine große Rezepturvielfalt abzuarbeiten. • einer Flachfolienanlage Durch die direkte Kopplung der Flachfolienanlage mit der Folienextrusion wird der Rezepturgradient in einer Folie, im Sinne einer 1-dimensionalen Library „eingefroren“. • integrierten Prüfeinrichtungen Durch den Einsatz von in das System zu integrierenden unterschiedlichen HTS-Methoden ist eine schnelle und aussagefähige Charakterisierung der so hergestellten Rezepturen direkt online möglich. Erst diese im Rahmen dieser Arbeit entwickelten und validierten mechanischen Online-Prüfungen, als neue HTS-Methoden, ermöglichen durch deren Integration in das Gesamtsystem ein schnelles Materialscreening, indem die im Rahmen des CC hergestellten Folien (Library) online auf ihre mechanische Performance hin geprüft werden. Die mechanische Online-Prüfeinrichtung wurde so konzipiert, dass drei unterschiedliche Tests simultan in einer Vorrichtung durchgeführt werden. Hierbei handelt es sich um: • einen Durchstoßversuch, • einen Weiterreißversuch (wahlweise in oder travers zur Folienabzugsrichtung), • einen modifizierten Zugversuch (wahlweise in oder travers zur Folienabzugsrichtung). Anhand dieser drei zeitgleich online gemessenen Werkstoffkennwerte sind Aussagen über die wichtigsten mechanischen Eigenschaften - Steifigkeit, Zähigkeit und Festigkeit - abhängig von der Werkstoffzusammensetzung möglich. Die Prüfeinrichtungen für den Zug- und den Weiterreißversuch sind so konstruiert, dass sie sich je nach Entwicklungsaufgabe in der Prüfeinrichtung um 90° drehen lassen, um auch mechanische Eigenschaften in und/oder travers zur Folienabzugsrichtung zu ermitteln. Durch das Entfernen der Kerbmesser in der Prüfeinrichtung des Weiterreißversuchs lässt sich dieser zu einem zweiten Online-Zugversuch umrüsten, um z. B. gleichzeitig in und travers zur Folienabzugsrichtung die Zugfestigkeit zu erfassen. Hierdurch ist es möglich, in einem Prozessdurchlauf das anisotrope Werkstoffverhalten rezeptur- und prozessabhängig zu charakterisieren. Die Entwicklung der mechanischen Online-Prüfeinrichtung wurde durch stetige Validierung der Prüfergebnisse abgesichert. Als Ergebnis dieser Validierungsschritte ist festzuhalten, dass die online und offline ermittelten mechanischen Eigenschaften gut miteinander korrelieren. Eine entscheidende Frage beim CC war neben der Korrelierbarkeit der mechanischen Eigenschaften die Zuordnung der Rezepturzusammensetzung - welche sich kontinuierlich infolge der Gradientendosierung verändert - zu den online ermittelten Materialeigenschaften. Hierbei ist das Verweilzeitverhalten des Gesamtsystems, bestehend aus Extruder und Flachfolienanlage, zu berücksichtigen. Zur Beantwortung dieser Fragestellung wurden zunächst verschiedene theoretische Modelle auf ihre Anwendbarkeit hin untersucht. Es konnte gezeigt werden, dass das Double Backflow Cell Model die gewählte Versuchsanordnung am besten beschreibt. Als Ergebnis dieser theoretischen Überlegungen ist festzuhalten, dass für eine gute Korrelation von Rezepturzusammensetzung und online ermittelten Materialeigenschaften nur die System-Totzeit bei hinreichend langer Gradientenzeit zu berücksichtigen ist. Diese Arbeitshypothese konnte durch einen Versuch mittels Gradientenzugabe von Glasfasern von 0 w% auf 30 w% in Polypropylen und anschließender Glührückstandsbestimmung experimentell bestätigt werden. Im Anschluss an die Entwicklung und Validierung des Gesamtsystems (Gradientendosierung und mechanische Online-Prüfung) wurden die Möglichkeiten des CC/HTS-Systems anhand eines praxisrelevanten Zweistoffsystems, bestehend aus Polypropylen und verschiedenen POEs, welche sich im Viskositätsverhältnis zum Polypropylen und dem α-Olefin-Anteil unterscheiden, aufgezeigt. Durch das Blenden von Polypropylen mit einem Polyolefinelastomer (POE) lässt sich Polypropylen schlagzäh modifizieren. Bei einem solchen Blend aus zwei in der Regel nicht mischbaren Polymeren ist die sich einstellende Phasenmorphologie für das mechanische Werkstoffverhalten von entscheidender Bedeutung. Die Phasenmorphologie, also die Form und Größe der POE-Partikel, in der Polypropylenmatrix ist stark von der ausgewählten POE-Type abhängig. Um Aussagen zur Blendmorphologie zu erhalten, wurde im Rahmen dieser Untersuchungen die mechanische Online-Prüfung erstmals mit einer Online-Kleinwinkellichtstreuung als HTS-Methoden gekoppelt. Durch die Online-Kleinwinkellichtstreuung ist es möglich, simultan zu den mechanischen Eigenschaften auch online Rückschlüsse auf die Blendmorphologie zu erhalten. Diese Untersuchungen zeigten, wie die Morphologie und die mechanischen Eigenschaften korrelieren und welche Bedeutung der Auswahl der Blendpartner - des POEs – für das mechanische Werkstoffverhalten zukommt. Interessant war, dass die untersuchten Prozessparameter von untergeordneter Bedeutung für die Performance eines solchen Blends sind. Abschließend wurde die CC/HTS Methode auf eine industrielle Fragestellung - Dreistoffsystem bestehend aus Polypropylen/Glasfasern/Koppler – angewandt. Die Anwendbarkeit des Systems auch auf komplexere Werkstoffzusammensetzungen wurde dabei bestätigt. Es konnte gezeigt werden, dass mit Hilfe dieser Methode / Versuchseinrichtung die Compoundentwicklung deutlich beschleunigt und ressourcenschonender durchgeführt werden kann und die Ergebnisse mit den klassisch erarbeiteten Werten korrelieren.
229

Potentialanalyse zur Verwendung des Leichtmetalls Magnesium im Fahrwerk eines Automobils

Schremmer, Michael 12 August 2013 (has links) (PDF)
Im Rahmen der Arbeit wurde das Potential von Magnesium für den Einsatz im Fahrwerk eines Automobils, am Beispiel der Querbrücke des Hinterachsträgers, ermittelt. Verschiedene Mg-Legierungen wurden im konventionellen und vakuumunterstützen Druckguss vergossen und der Al-Legierung vergleichend gegenübergestellt. Es wurden in einem ersten Schritt statische und zyklische Werkstoffkennwerte sowie Materialmodelle erforscht und bewertet. Verschiedene Lastfälle im Standard- und Sonderfahrbetrieb wurden durch statische und zyklische Betriebsfestigkeitssimulationen abgesichert. Konstruktive Bauteiloptimierungen waren notwendig um den Werkstoff Magnesium an die Anforderungen der Querbrücke anzupassen. Äußere Umwelteinflüsse im Fahrbetrieb machten ein Korrosionsschutzkonzept für die Querbrücke aus Magnesium notwendig. Untersucht wurden dabei verschiedene Maßnahmen zur Vermeidung von Kontakt- und Oberflächenkorrosion. Grundsätzlich scheint der Einsatz von Magnesium im Fahrwerk im Bereich mittlerer Betriebsbelastungen denkbar.
230

Beitrag zur numerischen Beschreibung des funktionellen Verhaltens von Piezoverbundmodulen / Contribution to the numerical characterisation of the functional behaviour of piezo composite modules

Kranz, Burkhard 05 November 2012 (has links) (PDF)
Die Arbeit befasst sich mit der effizienten Simulation des funktionellen Verhaltens von Piezoverbundmodulen als Aktor oder Sensor zur Schwingungsbeeinflussung mechanischer Strukturen. Ausgehend von einem FE-Modell werden über den Ansatz energetischer Äquivalenz die effektiven elektro-mechanischen Materialparameter ermittelt. Zur Berücksichtigung im Inneren der Einheitszelle liegender Elektroden werden die elektrischen Randbedingungen der Homogenisierungslastfälle angepasst. Die Homogenisierungslastfälle werden auch genutzt, um Phasenkonzentrationen für die Beanspruchungen der Verbundkomponenten zu ermitteln. Diese Phasenkonzentrationen werden eingesetzt, um aus dem effektiven Gesamtmodell die Beanspruchungen der Komponenten zu extrahieren. Zur dynamischen Modellbildung wird die Zustandsraumbeschreibung verwendet. Die Überführung einer piezo-mechanischen FE-Diskretisierung in ein Zustandsraummodell gelingt mit der Betrachtung der mechanischen Freiheitsgrade als Zustandsvariablen. Zur Abbildung der elektrischen Impedanz im Zustandsraum muss die elektrische Kapazitätsmatrix als Durchgangsmatrix einbezogen werden. Die Reduktion des Zustandsraums basiert auf der modalen Superposition. Die modale Transformationsbasis wird um Moden ergänzt, die die Verformung bei statischer elektrischer Erregung charakterisieren. Die Zustandsraumbeschreibung wird sowohl für eine Potential- als auch für eine Ladungserregung ausgeführt. Das Zustandsraummodell wird unter Verwendung von Filtermatrizen um Ausgangssignale für die mechanischen und elektrischen Beanspruchungsgrößen erweitert. Dies gestattet eine Kopplung der Zustandsraummodelle mit den Beanspruchungsanalysen. Die Anwendung der Berechnungsmethode wird am Beispiel der im SFB/TRR PT-PIESA entwickelten Piezo-Metall-Module demonstriert, die durch direkte Integration von piezokeramischen Basiselementen in Blechstrukturen gekennzeichnet sind. / This thesis deals with the efficient simulation of the functional behaviour of piezo composite modules for applications as actuators or sensors to influence vibrations of machine structures. Based on a FE-discretisation the effective electro-mechanical material parameters of the piezo composite modules are determined with an ansatz of energetic equivalence. To consider electrodes which are located inside the representative volume element the electrical boundary conditions of the load cases for homogenisation are adapted. The load cases for homogenisation are also used to determine the phase concentrations (or fluctuation fields) of stress/strain and electric field/electric displacement field in the composite constituents. These phase concentrations are required to extract stress and strain of the composite components based on the overall model with effective material parameters. For dynamical modelling a state space representation is used. The transformation of a FE-discretisation of the piezo-mechanical system into a state space model is possible by choosing the mechanical degree of freedom as state variables. For consideration of the electrical impedance in the state space model the electrical stiffness respectively capacitance matrix has to incorporate as feedthrough matrix. The dynamical model reduction of the state space model is based on modal superposition. For the correct reproduction of the electrical impedance the modal transformation basis has to be amended by deformation modes which represent the deformation behaviour due to static electrical excitation at the electrodes. The state space representation is built for potential and charge excitation. The state space model is enhanced by filter matrices to incorporate output signals for stress/strain and also for electric field/electric displacement field. This allows the coupling of the state space models with the stress analyses. The application of the simulation method is demonstrated using the example of the piezo-metal-modules developed in the CRC/TR PT-PIESA (German: SFB/TRR PT-PIESA). These piezo-metal-modules are characterised by direct integration of piezoceramic base elements in sheet metal structures.

Page generated in 0.1378 seconds