• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 135
  • 67
  • 2
  • Tagged with
  • 411
  • 250
  • 160
  • 150
  • 150
  • 150
  • 148
  • 127
  • 93
  • 75
  • 46
  • 36
  • 31
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Mechanical Properties of Icosahedral Viral Shells. A Molecular Dynamics Study / Die mechanischen Eigenschaften ikosaedrischer Virushüllen. Eine Molekulardynamik Studie

Zink, Mareike 16 March 2009 (has links)
No description available.
242

Mechanische Rekanalisation bei akutem ischämischen Schlaganfall durch Aspirationsthrombektomie mit dem Penumbra System / Mechanical recanalization in acute ischemic stroke by aspiration thrombectomy with the Penumbra System

Kreusch, Andreas 04 June 2013 (has links)
HINTERGRUND UND ZWECK: Das Penumbra System ist ein innovatives, neuartiges mechanisches Instrument für die Rekanalisierung von langstreckigen Gefäßverschlüssen der Hirnarterien durch Thrombus-Aspiration. Zweck dieser Studie ist die Beurteilung der Effektivität der Gefäßrekanalisation und des neurologischen Endergebnisses von Patienten, die infolge eines akuten ischämischen Schlaganfalls mit dem Penumbra System therapiert wurden. MATERIAL UND METHODEN: Insgesamt 91 Patienten mit akutem ischämischen Schlaganfall aufgrund eines Verschlusses hirnversorgender Arterien wurden mit dem Penumbra System behandelt und in diese retrospektive Studie aufgenommen. In 14 Fällen kam dabei allein das Penumbra System zum Einsatz, bei weiteren 77 Patienten wurde die mechanische Rekanalisation mit intraarterieller und/oder intravenöser Thrombolyse kombiniert. Das klinische Endergebnis wurde anhand des modified Rankin Scale (mRS) bewertet; die Rekanalisation wurde mit dem Thrombolysis in Cerebral Infarction Score (TICI Score) beurteilt. ERGEBNISSE: Das durchschnittliche Patientenalter betrug 62 ± 19,4 Jahre; der mittlere NIH Stroke Scale (NIHSS) bei Krankenhausaufnahme war 17. Eine erfolgreiche Rekanalisation konnte bei 77 % der Patienten erreicht werden. Durchschnittlich vergingen 49 Minuten von arterieller Punktion bis zur Gefäßrekanalisation (Quartillen 31 - 86). In der Verlaufskontrolle zeigten 36 % der Patienten eine NIHSS-Verbesserung von ≥ 10 Punkten und 34 % der Patienten mit einem Verschluss in der vorderen Zirkulation hatten einen mRS ≥ 2, während nur 7 % der Patienten mit einem Gefäßverschluss in der hinteren Zirkulation ein gutes Endergebnis im Nachbeobachtungszeitraum vorwiesen. Insgesamt 20 Patienten verstarben während des Krankenhausaufenthaltes; kein Todesfall war auf den Einsatz des Penumbra Systems zurückzuführen. FAZIT: Zusammenfassend bestätigen die in dieser Arbeit dargestellten Ergebnisse einer retrospektiven Single-Center-Studie die Effektivität des Penumbra Systems für die mechanische Rekanalisation von ischämischen Schlaganfallpatienten. Eine erfolgreiche und schnelle Rekanalisation mithilfe des Penumbra Systems ist dabei assoziiert mit einer signifikanten Verbesserung des funktionellen-klinischen Endergebnisses bei Patienten mit akutem ischämischen Schlaganfall aufgrund eines Gefäßverschlusses der hirnversorgenden Gefäße.Der erweiterte klinische Nutzen der mechanischen Thrombektomie, im Vergleich zur medikamentösen Standardtherapie, muss in der Zukunft durch eine prospektive, randomisierte und kontrollierte Studie belegt werden.
243

Investigations of nanoindentation data obtained by the combination of normal and mixed (normal and lateral) forces

Molnár, Olena 26 April 2010 (has links) (PDF)
Mechanische Eigenschaften, wie z.B. der Elastizitätsmodul oder die Fließspannung, sind wichtige Materialgrößen, um ein Material zu charakterisieren. Dies kann beispielsweise dazu dienen, ein Bauelement eines MEMS unter Berücksichtigung seiner Funktion zu optimieren. Daher ist es nötig, eine Messmethode zur Verfügung zu haben, die diese Größen auch in kleinen Dimensionen korrekt bestimmen kann, insbesondere auch in dünnen Schichten. Deshalb wurde ein eigenes Konzept basierend auf der Kombination von elastischer Modellierung und Nanoindentationsexperimenten in unserer Arbeitsgruppe entwickelt. Dieses Konzept beruht auf der Theorie der sphärischen Indentation in geschichtete Materialien (Image Load Method). In einem nächsten Schritt wurde dieser theoretische Ansatz erweitert, indem das Modell eines effektiven Indentors mittels des Erweiterten Hertzschen Ansatzes in das ursprüngliche Modell implentiert wurde. Zur gleichen Zeit wurden neue experimentelle Möglichkeiten entwickelt, die auf der Applikation einer definierten Lateralkraft in einem Indentationsexperiment beruhen. Bei der Auswertung dieser neuen experimentellen Methoden stellte sich heraus, dass die auf dem theoretischen Modell basierenden Fittingprozeduren einen subjektiven Faktor aufweisen, sodass je nach Nutzer der Auswertesoftware unterschiedliche Ergebnisse erhalten werden. Der Einfluss intrinsischer Spannungen auf Indentationsexperimente wurde ebenfalls bisher noch nicht systematisch untersucht. Daher ist es die Aufgabe dieser Arbeit, ebendiese offenen Fragen zu beantworten und die Methode der Nanoindentation weiter zu optimieren, um dieser Messmethode neue Anwendungsgebiete zu eröffnen. Die Untersuchungen zum Einfluss der intrinsischen Spannung auf die experimentell erhaltenen mechanischen Eigenschaften einer dünnen Schicht beinhalten ein Modellexperiment mit einer Formgedächtnislegierung (NiTinol), in welcher mittels einer eigens konstruierten Biegevorrichtung definierte biaxiale Spannungszustände eingestellt werden können. Dabei konnte gezeigt werden, dass die Berechnung des Von- Mises-Spannungsfeldes mit dem Wert der intrinsischen Spannung korrigiert werden kann, so dass das erhaltene Maximum der Von-Mises-Spannung dem tatsächlichen Wert der Fließspannung des Materials entspricht. In der vorliegenden Arbeit werden des Weiteren detaillierte Untersuchungen der Entlastungskurven von Referenzmaterialien (BK7-Glas) und geschichteten Materialien (CrN Schicht auf Si) durchgeführt, die auf Berkovich- Indentationsmessungen beruhen. Dabei wurde insbesondere die Auswerteroutine basierend auf dem Konzept des effektiven Indentors dahingehend weiterentwickelt, dass der bisherige subjektive Einfluss erheblich reduziert werden konnte. Diese generell anwendbare Auswerteroutine (d0-Fit) zeichnet sich vor allem durch ein hohes Maß an Nachvollziehbarkeit und Reproduzierbarkeit aus. Mit der gleichzeitigen Anwendung einer Normal- und einer Lateralkraft in einem Indentationsexperiment mit einem spitzen Indentor (Berkovich) ist es möglich, weitere Informationen über die mechanischen Eigenschaften der untersuchten Probe zu gewinnen. Dabei wurde eine kritische Lateralkraft gefunden, die der kritischen Normalkraft einer partiellen Be- und Entlastung mit sphärischen Indentoren analog ist. Hierbei konnte die Möglichkeiten sowie Grenzen demonstriert werden, die das Modell des effektiven Indentors mit dem erweiterten Hertzschen Ansatzes bei der Auswertung der erhalten Messkurven bereitstellt. Diese Untersuchungen mit den bereits erwähnten Referenzmaterialien haben den Charakter eines empirischen Ansatzes. / Mechanical parameters, such as Young’s modulus or yield strength, are important material properties to characterize a material. These parameters can be used to optimize a construction unit of a MEMS with respect to its function for example. Therefore a measurement technique is needed that allows the determination of such mechanical properties even at very small length scales and especially in thin films. To assess the mechanical properties at small length scales and/or layered structures an experimental approach based on nanoindentation measurements and corresponding elastic modeling was developed within our working group. This approach uses the elastic theory of spherical indentation in layered structures based on a potential theory (Image Load Method). In a next step this theoretical approach was extended with implementation of the concept of the effectively shape indenter employing an extended Hertzian approach. At the same time new experimental techniques were developed opening the possibility to apply well defined lateral loads to nanoindentation experiments accompanied with precise measurement of the lateral loads and displacements. The theoretical model bases on fitting procedures of the experimentally obtained curves. During the evaluation of this new experimental nanoindentation approach a subjective factor within the fitting procedures was found, so that depending on the user different results can be derived. Furthermore the influence of intrinsic stresses on the nanoindentation data was not investigated systematically so far. The task of this work is therefore the answering of these open questions and to optimize the method of nanoindentation to open new application possibilities for this new nanoindentation approach. The investigations of the influence of the intrinsic stress on experimentally obtained mechanical properties of a thin film bases on a model experiment with a shape memory alloy (NiTinol). With the help of special designed bending device biaxial stress state can be induced in this material. It was shown that the calculation of the von Mises stress field can be corrected with the value of the intrinsic stress so that the obtained maximum of the von Mises stress corresponds to the yield strength of the material. Moreover it was shown that the onset of phase transformation from austenite to martensite under indentation loads corresponds to the von Mises stress criterion. In the present work detailed analysis of the unloading curves obtained with Berkovich nanoindentation on reference materials (BK7 borosilicate glass) and layered materials (CrN on Si substrate) was performed. The evaluation procedure was refined with respect to the subjective factor. The found procedure (d0-fit) is applicable in a general way and is characterized by a high degree of traceability and reproducibility. Using mixed loading conditions with a normal and a lateral load application at the same time with a sharp indenter (Berkovich) further information on the mechanical characteristics of a material can be derived. A critical lateral force (CLF) was found which is analogous to the critical normal force in loading-partial unloading indentation with spherical indenters. During this investigation the possibilities as well as the limitations of the theoretical model based on the effectively shaped indenter together with the extended Hertzian approach for the analysis of experimentally obtain unloading curves was shown. It should be noted that these investigations with reference materials have empirical character.
244

Bioinspirierte Titin-analoge Polymere / Bioinspired Titin-mimicking Polymers

Schütz, Jan-Hendrik 10 June 2014 (has links)
Bioinspirierte Polymere, die die Multidomänenstruktur des Muskelproteins Titin imitieren, wurden auf Grundlage von zuvor synthetisierten, zyklischen Präpolymeren, die Wasserstoffbrückenbindungen-tragende Monomere enthalten, hergestellt und hinsichtlich ihrer mechanischen Eigenschaften untersucht.  Zunächst wurde die Ringexpansionspolymerisation (REP) zur Erzeugung zyklischer Makromoleküle, die auf einer von Nishikubo et al. entwickelten, lebenden Gruppentransferpolymerisation von Thiiranmonomeren mit Acylgruppen-tragenden Initiatoren basiert, eingehend untersucht. Im Speziellen wurde ein System, bestehend aus dem zyklischen Initiator 2,4-Thiazolidindion (TZD) und Derivaten desselben, dem Katalysator Tetrabutylammoniumchlorid, verschiedenartig substituierten Thiiranmonomeren 2-(Phenoxymethyl)thiiran (PMT), 2-Methylthiiran (MT), 2-(tert-Butoxymethyl)thiiran (TBMT), 2-((o-Methylphenoxy)methyl)thiiran (MPMT) und dem Lösungsmittel N-Methylpyrrolidin-2-on verwendet. Bei der Insertion der Monomere MT, TBMT und MPMT in TZD, die unter guter Kontrolle des Polymerisationsgrads und der Dispersität stattfand, wurde eine Verschmelzung der Ringe zu größeren Ringstrukturen mit einem Verschmelzungsgrad von bis zu zwei, bei Verwendung von PMT sogar von bis zu vier beobachtet. Der Grad dieser Verschmelzung nahm im Fall von PMT mit zunehmender Monomerkonzentration, zunehmendem molaren Monomer-zu-Initiator-Verhältnis und zunehmender Reaktionstemperatur ab, während er bei den anderen Monomeren keine Konzentrations- und Temperaturabhängigkeit zeigte. Durch Anpassung der Molmassenverteilungen mittels einer Summe von Gauß-Funktionen im Fall der PMT-Polymere konnte die zeitliche Änderung der molaren Anteile der verschiedenen Ringspezies verfolgt werden. So wurden für Polymerkonzentrationen von 14 bis 52 Gew-% Geschwindigkeitskoeffizienten der Verschmelzung, die sich über Größenordnungen von 10^(−2) bis 10^(−6) L/mol/s erstrecken, ermittelt. Bei Verwendung von in 3-Position substituierten TZD-Derivaten wurde eine Zunahme der Anzahl verschmolzener Makrozyklen von bis zu sieben festgestellt. Die Bildung zyklischer Strukturen wurde mittels Massenspektrometrie und rasterkraftmikroskopischer (AFM) Aufnahmen gezeigt.  Neben den Homopolymerisationen wurden zyklische (AB)n-Multiblockcopolymere aus MT und PMT mit bis zu acht aus der Ringverschmelzung resultierenden Blöcken synthetisiert. Sie zeigten im Zugversuch, aufgrund der verschiedenen Topologien, im Vergleich zu linearen Diblockcopolymeren ähnlicher Zusammensetzung, deutliche Unterschiede in der maximalen Zugdehnung und der Zähigkeit.  Weiterhin wurden die eingangs erwähnten bioinspirierten Polymere durch Kombination von zyklischen und linearen Segmenten hergestellt und auf ihre mechanischen Eigenschaften untersucht. Dazu wurden zyklische (ABC)n-Multiblockcopolymere, die zusätzlich einen kurzen Block des Monomers Ethyl-2-(4-(thiiran-2-ylmethoxy)benzamido)acetat (ETBAA) enthielten, der zur Ausbildung selbstkomplementärer Wasserstoffbrückenbindungen in der Lage ist, synthetisiert. Diese Präpolymere wurden mittels 1,3-dipolarer Cycloaddition in einer Polyadditionsreaktion mit einem niedermolekularen, bifunktionellen Verknüpfungsagens oder mit monofunktionellem Poly-n-butylacrylat (PBA) bzw. Polymethylacrylat (PMA), welche mittels RAFT-Polymerisation hergestellt wurden, verknüpft. So konnte im ersten Fall eine Poly-Ringpolymer-Topologie mit bis zu 19 nachgewiesenen Wiederholeinheiten und im zweiten Fall ein Polymer mit Kette–Ring–Kette-Topologie erhalten werden.  Untersuchungen der Proben im Zugversuch zeigten beim Kette–Ring–Kette-Polymer bis auf eine höhere Elastizität keine verbesserten Materialeigenschaften im Vergleich zum linearen PMA-Präpolymer. Die Poly-Ringpolymere hingegen zeigten im Gegensatz zu den Ringpolymeren ein einzigartiges Spannungs-Dehnungsverhalten, bessere Elastizitätseigenschaften und eine Erhöhung der anwendbaren Spannung bei gleicher Dehnung. Dies wurde durch den Einfluss inter- und intramolekular ausgebildeter physikalischer Bindungen durch die enthaltenen selbstkomplementären Wasserstoffbrückenbindungsmotive hervorgerufen. Eines der untersuchten Poly-Ringpolymere zeigte aufgrund der Ausbildung eines reversiblen physikalischen Netzwerkes sogar ein Formgedächtnis und die Fähigkeit zu einer partiellen Selbstheilung.
245

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 24 February 2014 (has links) (PDF)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
246

Anwendung der Thermomechanischen Behandlung mit Wärmebehandlung aus der Walzhitze für die Herstellung der Stabstahlsorte 15MnCrMoV4-8

Voloskov, Sergey 20 February 2014 (has links) (PDF)
Zur Herstellung von Stabstahl der Sorte 15MnCrMoV4-8 ist die thermomechanische Behandlung erprobt worden. Diese erfolgte in Kombination mit der kosten- und energiesparenden Wärmebehandlung aus der Walzhitze. Dabei wurde besondere Aufmerksamkeit der chemischen Zusammensetzung gewidmet. Sie wird aus der Sicht kostenintensiver Legierungselemente, wie sie in Kombination mit Umformung und Abkühlung zum Erreichen eines mechanischen Eigenschaftsprofils führen, betrachtet. Das erforderliche Niveau der mechanischen Eigenschaften ist aus der Anwendung dieser Stahlsorte für die Fertigung von Pumpenstangen aus dem Bereich der Ölfördernden Industrie abgeleitet worden. Bei den entwickelten und erprobten Herstellungstechnologien haben ein Teil der Stahlstäbe der gewählten Legierungen das geforderte Eigenschaftsniveau von Halbzeugen für die ölfördernde Industrie erreicht. Ein Teil davon hat sogar das Eigenschaftsprofil einer höheren Festigkeitsklasse, die zu Gewichts- und Energieeinsparungen führt. Die angestrebte Lebensdauer, ermittelt durch Schwingfestigkeitstests unter atmosphärischen Bedingungen sowie im korrosiv-wässrigen 3%NaCl-Medium, ist bei fast allen untersuchten Werkstoffen erreicht worden.
247

Production of high-strength Al-based alloys by consolidation of amorphous and partially amorphous powders

Surreddi, Kumar Babu 28 June 2011 (has links) (PDF)
In this thesis, novel bulk Al-based alloys with high content of Al have been produced by powder metallurgy methods from amorphous and partially amorphous materials. Different processing routes, i.e. mechanical alloying of elemental powder mixtures, controlled pulverization of melt-spun glassy ribbons and gas atomization, have been employed for the production of the Al-based powders. Among the different processing routes, gas atomization is the best choice for the production of Al-based amorphous and partially amorphous powders as precursors for the subsequent consolidation step because it allows the production of large quantities of powders with homogeneous properties (e.g. structure and thermal stability) along with a uniform size distribution of particles. Amorphous and nanocrystalline powders have to be consolidated to achieve dense bulk specimens. However, consolidation of these phases is not an easy task and special care has to be taken with respect to accurate control of the consolidation parameters in order to achieve dense bulk specimens without inducing undesirable microstructural transformations (e.g. crystallization and grain coarsening) or insufficient particle bonding. Consequently, the effect of temperature on viscosity as well as on phase formation has been studied in detail in order to select the proper consolidation parameters. Following their characterization, the Al-based powders have been consolidated into bulk specimens by hot pressing (HP), hot extrusion and spark plasma sintering (SPS) and their microstructure and mechanical properties have been extensively investigated. Consolidation into highly-dense bulk samples cannot be achieved without extended crystallization of the glassy precursors. Nevertheless, partial or full crystallization during consolidation leads to remarkable mechanical properties. For example, HP Al84Gd6Ni7Co3 samples display a remarkably high strength of about 1500 MPa, which is three times larger than the conventional high-strength Al-based alloys, along with a limited but distinct plastic deformability (3.5 – 4%). Lower strength (930 MPa) but remarkably larger plastic strain exceeding 25 % has been achieved for the Al87Ni8La5 gas-atomized powders consolidated by SPS above their crystallization temperature. Similarly, HP Al90.4Y4.4Ni4.3Co0.9 bulk samples display high compression strength ranging between 820 and 925 MPa combined with plastic strain in the range 14 – 30%. Finally, preliminary tensile tests for the Al90.4Y4.3Ni4.4Co0.9 alloy reveal promising tensile properties comparable to commercial high-strength Al-based alloys. The mechanical behavior of the consolidated specimens is strictly linked with their microstructure. High strength and reduced plasticity are observed when a residual amorphous phase is present. On the other hand, reduced strength but enhanced plastic deformation is a result of the complete crystallization of the glass and of the formation of a partially or fully interconnected network of deformable fcc Al. These results indicate that the combined devitrification and consolidation of glassy precursors is a particularly suitable method for the production of Al-based materials characterized by high strength combined with considerable plastic strain. Through this method, the mechanical properties of the consolidated samples can be varied within a wide range of strength and ductility depending on the microstructure and the consolidation techniques used. This might open a new route for the development of innovative high-performance Al-based materials for transport applications.
248

Model Reduction for Piezo-Mechanical Systems using Balanced Truncation

Uddin, Mohammad Monir 07 November 2011 (has links) (PDF)
Today in the scientific and technological world, physical and artificial processes are often described by mathematical models which can be used for simulation, optimization or control. As the mathematical models get more detailed and different coupling effects are required to include, usually the dimension of these models become very large. Such large-scale systems lead to large memory requirements and computational complexity. To handle these large models efficiently in simulation, control or optimization model order reduction (MOR) is essential. The fundamental idea of model order reduction is to approximate a large-scale model by a reduced model of lower state space dimension that has the same (to the largest possible extent) input-output behavior as the original system. Recently, the system-theoretic method Balanced Truncation (BT) which was believed to be applicable only to moderately sized problems, has been adapted to really large-scale problems. Moreover, it also has been extended to so-called descriptor systems, i.e., systems whose dynamics obey differential-algebraic equations. In this thesis, a BT algorithm is developed for MOR of index-1 descriptor systems based on several papers from the literature. It is then applied to the setting of a piezo-mechanical system. The algorithm is verified by real-world data describing micro-mechanical piezo-actuators. The whole algorithm works for sparse descriptor form of the system. The piezo-mechanical original system is a second order index-1 descriptor system, where mass, damping, stiffness, input and output matrices are highly sparse. Several techniques are introduced to reduce the system into a first order index-1 descriptor system by preserving the sparsity pattern of the original models. Several numerical experiments are used to illustrate the efficiency of the algorithm.
249

Die Rolle des Transkriptionsfaktors NF-κB bei der mechanischen Dehnung von pulmonalen Strukturzellen

Maser, Franziska 07 July 2010 (has links) (PDF)
Obwohl die künstliche bzw. mechanische Beatmung bei der Therapie von ALI / ARDS eine wichtige und bedeutende Rolle spielt, kann sie selbst eine akute Lungen-schädigung auslösen oder bestehende pulmonale Beeinträchtigungen verstärken. Zentraler Schädigungsmechanismus ist die alveoläre Überdehnung durch hohe Ti-dalvolumina. Selbst bei der Anwendung kleiner, protektiver Tidalvolumina in Lungen mit einem nur geringen Anteil belüfteter Alveolen kann es in diesen zu alveolärer Überdehnung kommen. Diese Überdehnung führt einerseits zu mechanisch induzier-te Apoptose sowie Nekrose und andererseits zu einer mechanisch induzierten Ver-änderung der Mediatorenfreisetzung hin zu einem pro-inflammatorischen Muster. Da der Transkriptionsfaktor NF-κB zahlreiche Mediatoren aktiviert bzw. von ihnen beeinf-lusst werden kann, nimmt er in diesem Geschehen eine ganz besondere Schlüssel-position ein. In der vorliegenden Arbeit wird der Hypothese nachgegangen, ob die NF-κB-Aktivierung bei der mechanischen Dehnung und dem daraus resultierenden inflam-matorischen Verhalten von pulmonalen Strukturzellen verändert wird und in wie weit ein Zusammenhang zwischen Dehnung, Zellschädigung und NF-κB besteht. Dafür wurden sowohl frisch isolierte alveoläre Ratten-Typ-II Zellen, Zellen der hu-man-alveolaren Epithelzelllinie A549 sowie Lungen- Fibroblasten der Zell-Linie Wi 38 untersucht. Alle drei Zellarten wurden auf einem speziellen elastischen Silikonboden von 6er-Well-Platten inkubiert, wo sie mit Hilfe des Flexercell-Stretch-Gerätes (FX 3000) als Zellmonolayer equibiaxial für 24 Stunden gedehnt wurden. Auch die zeitliche Abhängigkeit der NF-κB-Expression von der mechanischen Deh-nung wurde untersucht. Dabei konnte festgestellt werden, dass ein Zusammenhang zwischen NF-κB-Aktivierung, Zellschädigung und mechanischer Dehnung existiert. Wobei bei unter-schiedlichen Zellarten auch variierende Ergebnisse beobachtet werden konnten. Im Zusammenhang mit anderen aus unserer Forschungsgruppe und in der Literatur stammenden Erkenntnissen konnte so eine Verknüpfung zwischen NF-κB-Aktivierung, Zytokinfreisetzung und inflammatorischer pulmonaler Reaktion nachge-wiesen werden.
250

Flammgespritzte Schichten im System Al2O3-TiO2-ZrO2

Kratschmer, Tim 17 January 2011 (has links) (PDF)
Beim Flammspritzen von Mischungen im System Al2O3-TiO2-ZrO2 treten vielfältige Effekte auf. Es kommt z.B. zur Ausbildung eines amorphen Anteils, der in Form von amorphen Sublamellen, dem primären amorphen Anteil, und in dendritisch geprägten Bereichen, dem sekundären amorphen Anteil im Gefüge vorliegt. Dieser beeinflusst die mechanischen Eigenschaften deutlich. Bei einer Temperaturbehandlung entstehende Ausscheidungen von ZrO2 oder verschiedenen Zirkoniumtitanaten beeinflussen die mechanischen Eigenschaften ebenfalls signifikant.

Page generated in 0.058 seconds