• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 134
  • 67
  • 2
  • Tagged with
  • 408
  • 247
  • 160
  • 147
  • 147
  • 147
  • 147
  • 125
  • 91
  • 75
  • 46
  • 36
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Comparative Investigations to Corrosion Fatigue of Al-Cu and Al-Mg-Si Alloys

Thieme, Michael, Bergner, Frank, Haase, Ingrid, Worch, Hartmut January 2004 (has links)
One of the serious problems encountered in the use of various materials in technology is the occurrence of fatigue phenomena as an undesirable material damage under cyclic mechanical load. For aluminium alloys this issue is of extremely high importance in case of their utilisation for aircraft purposes, e.g., where a very wide spectrum of frequencies occur. Moreover, the cyclic loading may be joined by the presence of specific electrolyte media. Therefore, the material candidates must be thoroughly examined in view of their sensitivity to fatigue as well as to corrosion fatigue. Usually, the Cu-containing alloy EN-AW 2024 T3 is applied besides 7075 T6 in Airbus aircrafts, but the weldable alloy 6013 T6 is considered to be a potential alternative. Referring to former investigations on the environmental sensitivity (ES) in the fatigue behaviour /1-6/ this paper brings up experimental findings as well as expanded considerations about damaging mechanisms and modelling. The situation with the alloy 6013 T6 is emphasized. The propagation of cracks under cyclic load in different environments, such as vacuum, air or aqueous media, is described by means of fracture mechanics. This enables discrimination in view of the influence of environmental factors and, hence, the participation of corrosion processes.
272

Microstructure, lattice strain and mechanical properties of single phase multi-component alloys

Thirathipviwat, Pramote 05 July 2019 (has links)
The high entropy alloys (HEAs) have been developed based on the concept of entropic stabilization associated with a large number of constituent elements. The high configurational entropy in HEAs is expected to cause promising characteristic properties, i.e. high microstructural stability and high mechanical properties. In this study, the equiatomic fcc-structured FeNiCoCrMn and the bcc-structured TiNbHfTaZr single phase high entropy alloys (HEAs) were investigated regarding the effect of multiple atom species on microstructure, intrinsic lattice strain and mechanical properties. In a comparison with the HEAs, the sub-alloys having less chemical complexity were studied. The selected sub-alloys of the FeNiCoCrMn HEA were FeNiCoCr, FeNiCo, FeNi alloys and pure Ni, while equiatomic TiNbHfTa, TiNbHf, TiNb alloys and pure Nb were studied to compare with the TiNbHfTaZr HEA. The samples in this study were prepared by arc-melting, cold-crucible casting and thermomechanical treatment. The thermal phase stability of the FeNiCoCrMn HEA, TiNbHfTaZr HEA and their sub-alloys were observed and no second phase was formed between 300 - 1500 K. In high entropy alloys, the random arrangement of multiple atom species is assumed to cause large atomic displacements at lattice sites, which give rise to a severe lattice distortion. The evidences of lattice distortion in HEAs have been limitedly reported due to a difficulty of experimental investigation. In this work, the pair distribution function (PDF) method was used to assess local strain with analysis of diffuse intensities on total synchrotron X-ray scattering data. The current study found that the level of local lattice strain associated with atomic displacement was a function of atomic size misfit. The local lattice strain of the FeNiCoCrMn HEA was small and comparable to that of the sub-alloys which obtain similar values of the atomic size misfit. In contrast to the FeNiCoCrMn system, the magnitude of the local lattice strain increased with the value of atomic size misfit from the unary Nb sample to the quinary TiNbHfTaZr HEA. The lattice distortion was evident in the TiNbHfTaZr HEA due to large local lattice strain, but the local lattice strain of the FeNiCoCrMn HEA was not anomalously large. The level of lattice strain determines the solid solution hardening as a consequence of the elastic interaction between dislocations and atoms. The comparable level of the lattice strain in the FeNiCoCrMn HEA, its sub-alloys and Ni sample led to narrow range of hardness (64 – 132 HV) and tensile yield strength (60 – 192 MPa). For the bcc-structured samples, the hardness and the yield strength significantly varied depending on the level of local lattice strain, between 80 – 327 HV of hardness and 207 – 985 MPa of tensile yield strength. It is clear from the result that the atomic size misfit influences the level of the local lattice strain and the solid solution hardening. Cold rotary swaging was used to study the work hardening in the HEAs because it can delay fracture by large hydrostatic stresses. The large plastic deformability was observed in the FeNiCoCrMn and TiNbHfTaZr HEAs. The TiNbHfTaZr HEA was cold-swaged by 90% reduction of the cross-sectional area without intermediate annealing. The FeNiCoCrMn HEA was swaged until 85% reduction of the cross-sectional area; however, it was observed that it could be further deformed. The dislocation densities of the HEAs and its sub-alloys after the cold deformation were calculated as in the range between 1014 - 1015 m-2, in a good agreement with reported values of conventional metals after severe plastic deformation. This finding suggested that the level of dislocation density storage was correlated with the number of the constituent elements, the level of lattice distortion associated with atomic size misfit and the intrinsic properties (i.e. the stacking fault energy and the melting point). Whereas the intrinsic lattice strains of the FeNiCoCrMn HEA and its sub-alloys were comparable, the levels of dislocation storage were different possibly due to a difference of stacking fault energy. For the bcc-structured samples, the dislocation densities of the TiNbHfTaZr HEA, TiNbHfTa and TiNbHf alloys were large due to the large atomic size misfits. The high dislocation density leads to strong interactions between dislocations, which results in high resistance to dislocation motions. The high mechanical properties (hardness and yield strength) in the as-deformed FeNiCoCrMn and TiNbHfTaZr HEA were presented with the evidence of high dislocation densities. Moreover, the hardness and yield strength of the FeNiCoCrMn HEA significantly increased by the deformation, while those of the TiNbHfTaZr HEA after the deformation were slightly changed from the undeformed HEA. The large work hardenability of the FeNiCoCrMn HEA is possibly caused by small solid solution hardening and ease of twin formation. The research results suggest a further step towards designing an alloy composition for a development of microstructure and mechanical properties of high entropy alloys. It is evidently clear from the findings that the large number of constituent elements (in a term of high configurational entropy) is not only a factor in the determination of lattice distortion, microstructure and mechanical properties, but the type and the combination of constituent elements including the atomic interactions (i.e. atomic size misfit) have also an effect.:Abstract v Zusammenfassung ix Contents xiii 1. Motivation and objectives 1 2. Fundamentals 5 2.1 Concept of high entropy alloys 5 2.1.1 Phase formation and thermodynamic 5 2.1.2 Four core effects 10 2.2 Alloy classification of high entropy alloys 13 2.3 Mechanical properties of high entropy alloys 14 3. Experiments 19 3.1 Alloy preparation 19 3.1.1 Alloy selection 19 3.1.2 Melting and casting 21 3.1.3 Thermomechanical treatment 23 3.2 Sample characterization 27 3.2.1 Chemical analyses 27 3.2.2 Differential scanning calorimetry (DSC) 27 3.2.3 Scanning electron microscopy and microstructural analyses 28 3.2.4 X-ray diffraction (XRD) 29 3.2.5 High energy synchrotron X-ray diffraction 29 3.2.6 Mechanical Properties 33 4. Thermal phase stability of single phase high entropy alloys 35 5. An assessment of lattice strain in single phase high entropy alloys 49 5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50 5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56 6. Solid solution hardening in single phase high entropy alloys 65 6.1 Hardness of fcc- and bcc-structured high entropy alloys 65 6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70 6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82 7. Work hardening in single phase high entropy alloys 91 7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91 7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93 8. Summary and outlook 109 8.1 Summary 109 8.2 Outlook 112 References 113 Acknowledgements 131 Erklärung 133 / Die Hochentropielegierungen (HELen) wurden auf der Grundlage des Konzepts der entropischen Stabilisierung entwickelt, was eine große Anzahl von Legierungselementen beinhaltet. Es wird erwartet, dass die hohe Konfigurationsentropie in HELen vielversprechende charakteristische Eigenschaften hervorruft, d.h. hohe mikrostrukturelle Stabilität und hohe mechanische Eigenschaften. In dieser Studie wurden die äquiatomare kfz-strukturierte FeNiCoCrMn und die krz-strukturierte TiNbHfTaZr Einphasen-Hochentropielegierung hinsichtlich der Wirkung mehrerer Atomarten auf das Gefüge, die intrinsische Gitterdehnung und die mechanischen Eigenschaften untersucht. Im Vergleich zu den HELen wurden die Sublegierungen mit geringerer chemischer Komplexität untersucht. Die ausgewählten Sublegierungen der FeNiCoCrMn HEL waren FeNiCoCr, FeNiCo, FeNi-Legierungen und reines Ni, während äquiatomare TiNbHfTa, TiNbHf, TiNbHf, TiNb-Legierungen und reines Nb im Vergleich zur TiNbHfTaZr HEL untersucht wurden. Die Proben in dieser Studie wurden durch Lichtbogenschmelzen, Kalttiegelguss und thermomechanische Behandlung hergestellt. Die thermische Phasenstabilität der FeNiCoCrMn HEL, der TiNbHfTaZr HEL und ihrer Sublegierungen wurde untersucht und es wurde keine zweite Phase zwischen 300 - 1500 K gebildet. Bei Hochentropielegierungen wird angenommen, dass die zufällige Anordnung mehrerer Atomarten zu großen Atomverschiebungen an den Gitterplätzen führt, die eine starke Gitterverzerrung hervorrufen. Aufgrund der Schwierigkeit der experimentellen Untersuchung wurden Beweise für Gitterverzerrungen bei HELen nur begrenzt berichtet. In dieser Studie wurde die Methode der Paarverteilungsfunktion (PDF) verwendet, um die lokale Dehnung mit Analyse der diffusen Intensitäten der gesamten Synchrotron-Röntgenstreuungsdaten zu beurteilen. Die aktuelle Studie ergab, dass die Höhe der lokalen Gitterdehnung, die mit der atomaren Verschiebung einhergeht, eine Funktion der Differenz der Atomgröße ist. Die lokale Gitterdehnung der FeNiCoCrMn HEL war klein und vergleichbar mit der der Sublegierungen, für die ähnliche Werte für die Atomgrößen-Unterschiede ermittelt wurden. Im Gegensatz zum FeNiCoCrMn-System stieg die Größe der lokalen Gitterdehnung mit dem Wert der Atomgrößendifferenz von der unären Nb-Probe bis zur quinären TiNbHfTaZr HEL. Die Gitterverzerrung war in der TiNbHfTaZr HEL aufgrund der großen lokalen Gitterdehnung offensichtlich, wohingegen die lokale Gitterdehnung der FeNiCoCrMn HEL nicht ungewöhnlich groß war. Die Höhe der Gitterdehnung bestimmt die Mischkristallverfestigung als Folge der elastischen Wechselwirkung zwischen Versetzungen und Atomen. Der vergleichbare Wert der Gitterdehnung in der FeNiCoCrMn HEL, seinen Sublegierungen und den Ni-Proben führte zu einem engen Härte- (64 - 132 HV) und Streckgrenzenbereich (60 - 192 MPa). Für die krz-strukturierten Proben variierten die Härte und die Streckgrenze dagegen je nach Höhe der lokalen Gitterdehnung signifikant, d.h zwischen 80 - 327 HV hinsichtlich der Härte und zwischen 207 - 985 MPa hinsichtlich der Streckgrenze. Aus dem Ergebnis ist ersichtlich, dass die Differenz der Atomgröße einen Einfluss auf die Höhe der lokalen Gitterdehnung und die Mischkristallverfestigung hat. Das Kalthämmen wurde für die Untersuchung der Kaltverfestigung in den HELen genutzt, da es den Bruch durch die großen hydrostatischen Spannungen verzögern kann. Die große plastische Verformbarkeit wurde bei den FeNiCoCrMn und TiNbHfTaZr HELen beobachtet. Die TiNbHfTaZr HEL wurde ohne Zwischenglühen um 90% der Querschnittsfläche kaltgehämmert. Die FeNiCoCrMn HEL wurde bis zu einer Verkleinerung der Querschnittsfläche von 85% gehämmert, wobei jedoch eine weitere Verformung möglich gewesen wäre. Die Versetzungsdichten der HELen und ihrer Sublegierungen wurden nach dem Verformung in einem Bereich zwischen 1014 - 1015 m-2 berechnet, was in guter Übereinstimmung mit den berichteten Werten konventioneller Metalle nach starker plastischer Verformung ist. Dieses Ergebnis deutete darauf hin, dass die Höhe der gespeicherten Versetzungsdichte mit der Anzahl der beinhaltenden Elemente, dem Grad der Gitterverzerrung im Zusammenhang mit der Differenz der Atomgröße und den intrinsischen Eigenschaften (d.h. der Stapelfehlerenergie und dem Schmelzpunkt) korreliert. Obwohl die intrinsischen Gitterdehnungen der FeNiCoCrMn HEL und seiner Sublegierungen vergleichbar waren, waren die Werte der gespeicherten Versetzungen unterschiedlich, was möglicherweise an einer Differenz der Stapelfehlerenergie lag. Für die krz-strukturierten Proben waren die Versetzungsdichten der TiNbHfTaZr HEL, der TiNbHfTa- und der TiNbHf-Legierungen aufgrund der großen Atomgrößenunterschiede hoch. Die hohe Versetzungsdichte bewirkt starke Wechselwirkungen zwischen den Versetzungen, was zu einem hohen Widerstand gegen Versetzungsbewegungen führt. Die hohen mechanischen Eigenschaften (Härte und Streckgrenze) in den verformten FeNiCoCrMn und TiNbHfTaZr HELen wurden mit dem Nachweis hoher Versetzungsdichten belegt. Darüber hinaus wurden die Härte und die Streckgrenze des FeNiCoCrMn HEL durch das Kalthämmern deutlich erhöht, während die der TiNbHfTaZr HEL nach dem Hämmerprozess nur leicht gegenüber der unverformten HEL verändert wurden. Die große Kaltverfestigung der FeNiCoCrMn HEL ist möglicherweise auf eine geringe Mischkristallhärtung und eine geringfügige Zwillingsbildung zurückzuführen. Die Forschungsergebnisse empfehlen für die Entwicklung des Gefüges und der mechanischen Eigenschaften von Hochentropielegierungen weitere Schritte hinsichtlich eines zielführenden Legierungsdesigns durchzuführenhin. Aus den Ergebnissen geht eindeutig hervor, dass die große Anzahl an Legierungselementen ( hinsichtlich einer hochkonfigurativen Entropie) nicht die einzige Einflussgrößebei der Bestimmung von Gitterverzerrungen, dem Gefüge und der mechanischen Eigenschaften darstellt, sondern auch die Art und die Kombination der Legierungselementen einschließlich der atomaren Wechselwirkungen (d.h. Atomgrößenunterschiede) einen Effekt haben.:Abstract v Zusammenfassung ix Contents xiii 1. Motivation and objectives 1 2. Fundamentals 5 2.1 Concept of high entropy alloys 5 2.1.1 Phase formation and thermodynamic 5 2.1.2 Four core effects 10 2.2 Alloy classification of high entropy alloys 13 2.3 Mechanical properties of high entropy alloys 14 3. Experiments 19 3.1 Alloy preparation 19 3.1.1 Alloy selection 19 3.1.2 Melting and casting 21 3.1.3 Thermomechanical treatment 23 3.2 Sample characterization 27 3.2.1 Chemical analyses 27 3.2.2 Differential scanning calorimetry (DSC) 27 3.2.3 Scanning electron microscopy and microstructural analyses 28 3.2.4 X-ray diffraction (XRD) 29 3.2.5 High energy synchrotron X-ray diffraction 29 3.2.6 Mechanical Properties 33 4. Thermal phase stability of single phase high entropy alloys 35 5. An assessment of lattice strain in single phase high entropy alloys 49 5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50 5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56 6. Solid solution hardening in single phase high entropy alloys 65 6.1 Hardness of fcc- and bcc-structured high entropy alloys 65 6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70 6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82 7. Work hardening in single phase high entropy alloys 91 7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91 7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93 8. Summary and outlook 109 8.1 Summary 109 8.2 Outlook 112 References 113 Acknowledgements 131 Erklärung 133
273

Staudenknöterich: Untersuchungen zur Bekämpfung von Staudenknöterichen (Fallopia japonica Houtt, Fallopia sachalinensis): Ergebnisse der Freilandversuche des LfULG 2005 – 2018

Meinlschmidt, Ewa 24 November 2020 (has links)
Im Rahmen des Vorhabens des LfULG „Untersuchungen zur Bekämpfung von Staudenknötericharten“ wurden von 2007 bis 2018 auf fünf Standorten in Sachsen Exaktversuche in der natürlichen Population durchgeführt. Getestet wurden Glyphosat-haltige und Glyphosat-freie Herbizide in unterschiedlichen Anwendungsverfahren sowie die Wirkung von mechanischen Maßnahmen. Die Schriftenreihe informiert über die Ergebnisse der Untersuchungen und gibt Empfehlungen zur Eignung der Verfahren. Die Veröffentlichung richtet sich insbesondere an Landwirte, Kommunen, Fachbehörden und Agrarfachleute. Redaktionsschluss: 22.07.2020
274

Interferometric detection and control of cantilever displacement in NC-AFM applications

von Schmidsfeld, Alexander 11 July 2016 (has links)
The interferometric cantilever displacement detection in non-contact atomic force microscopy (NC-AFM) is in fundamental aspects explored and optimized. Furthermore, the opto-mechanical interaction of the light field with the cantilever is investigated in detail. Cantilevers are harmonic oscillators that are designed to have a high sensitivity for the detection of minute external forces typically originating from tip-sample interaction. In this work, however, the high sensitivity is used for detailed studies of opto-mechanical forces due to the radiation pressure of the light interacting with the cantilever. The interferometer in the NC-AFM setup consists of an optical cavity working similar to a Fabry-Pérot interferometer in combination with a reference interference arm working similar to a Michelson interferometer combining multi-beam interference with a reference beam resulting in a complex superposition of beams forming the interferometric intensity modulation signal. The character of the interferometer can be adjusted from predominant Michelson to predominant Fabry-Pérot characteristics by the optical loss inside the cavity. A systematic approach for accurate alignment, by using 3D intensity maps and intensity-over-distance curves, as well as the implications of deficient fiber-cantilever configurations are explored and the impact of the interferometer configuration on the detection system noise floor is investigated. A new physical property, namely, the Fabry-Perot enhancement factor is introduced that is a direct measure for the light intensity interacting with the cantilever compared to the reference beam intensity reflected back inside the fiber. The quantification of the optical loss yields an exact knowledge of the amount of light interacting with the cantilever that is crucial to understand opto-mechanical effects. The resulting opto-mechanical force varies sinusoidally during the course of one oscillation cycle. It is a key result of this work that the sinusoidal modification of the cantilever restoring force can be described analogue to the restoring force of a pendulum. This results in an observable amplitude dependent frequency shift of the cantilever oscillation, allowing a calculation of the ratio of the opto-mechanical force relative to the cantilever restoring force and thus allows an in-situ measurement of the cantilever stiffness with remarkable precision. Further investigation of the cantilever oscillation yields that other characteristic properties of the oscillation are significantly modified by the opto-mechanical interaction. The observed effective fundamental mode Q-factor drops significantly while the cantilever amplitude response to a certain excitation voltage increases. A discrete numerical model describing the cantilever as a 1D linear chain of mass points is implemented, yielding that the additional opto-mechanical force results in a partial pinning of the cantilever at the edges of the interferometric fringes. Pinning efficiently shifts energy from the fundamental mode to higher modes and modes of a pinned cantilever, resulting in a complex modal structure.
275

Designing Plasmonic Meta-Surfaces via Template-Assisted 1D, 2D, and 3D Colloidal Assembly

Probst, Patrick T. 13 December 2021 (has links)
Atoms change their optical properties drastically when combined into molecules or crystals. This becomes evident when comparing isolated carbon atoms with their solid-state polymorphs graphite and diamond. Plasmonic meta-surfaces adopt this concept to design the optical properties of thin films at will. In analogy to natural materials, the optical response of a meta-surface is dictated by the arrangement and plasmonic coupling (hybridization) of sub-wavelength metallic objects, so-called meta-atoms, rather than by the individual components. Although traditional direct writing approaches offer a high degree of freedom in design of nanostructures, reconfiguration of meta-atoms is usually limited. Especially their spatial rearrangement remains a huge challenge. Postfabrication tunability, however, would be crucial to advance device miniaturization and optical computing, by introducing dynamically tunable optics and optical switches. This thesis investigates colloidal assembly as a cost-efficient approach to fabricate meta-surfaces on cm²-areas whose optical properties can be tuned by geometrical reconfiguration. Hydrodynamic fields and topographical templates guide the deposition of colloidal nanoparticles with precise orientational and/or positional control. In the course of this work, the level of particle assembly complexity is successively increased to realize 1-, 2-, and 3-dimensional (1D, 2D, 3D) plasmonic assemblies. Strongly correlated with assembly geometry, different aspects of light are controllable. (I) 1D alignment of silver nanowires (AgNWs) produces differential transmission for linear polarization states (linear dichroism). (II) Single particles in a 2D square array interact coherently to produce a sharp, so-called surface lattice resonance (SLR). This effect confines strong electromagnetic fields in the lattice plane, which is promising for plasmonic lasing. (III) 3D chiral, cross-stacked particle chains control the transmission of circular polarization states (circular dichroism, CD). The unique advantages of colloidal assembly are demonstrated. (I) Spray coating allows rapid deposition of oriented AgNWs over large areas and is compatible with roll-to-roll processing. Employing wrinkle-structured receiver substrates, gradients of continuously varying linear dichroism are feasible in a single step. (II) Capillary assembly is able to realize ~1 nm inter-particle spacing, which is not achievable by conventional top-down lithographical methods. The small spacing enhances inter-particle plasmon coupling and boosts CD in cross-stacked, chiral particle chains, as presented in this thesis. (III) Such hierarchical and restackable, chiral structures make large volumes of superchiral fields accessible for ultrasensitive, enantioselective detection of analytes. This is in vast contrast to stacked nanobars produced via lithography where the most pronounced fields in the inter-layer gap are blocked by the presence of spacing layers. A central focus of this thesis is the postfabrication reconfiguration of the systems presented. This in-situ tunability is realized by elastic and reversibly stackable templates. (I) Uniaxial, mechanical strain converts the 2D square lattice into a rectangular one. This splits the SLR into two polarization-dependent modes whose resonance position is shifted reversibly when load is applied. (II) The cross-stacked, chiral particle chains are restackable. This allows adjustment of the stacking angle to tune CD magnitude and sign. (III) Reversible compression of this chiral stack induces a bending of the chains to shift the spectral position of CD modes. In a proof of concept, locally varying compression is shown to create a gradient of CD response as important step towards on-chip CD spectroscopy. Overall, this thesis (I) tests the limits of colloidal assembly by going from single-particle arrays to complex 3D arrangements; (II) explores geometrical reconfiguration of these plasmonic nanostructures to tune pronounced optical effects. The strategies presented herein can be extended to other colloidal particle shapes and materials. Moreover, the concepts of restackable meta-surfaces and local compression for tuning optical response open an intriguing playground and might inspire top-down approaches as well. / Atome ändern ihre optischen Eigenschaften drastisch, wenn sie sich zu Molekülen oder Kristallen vereinigen. Dies wird deutlich, wenn man isolierte Kohlenstoffatome mit ihren Festkörperpolymorphen Graphit und Diamant vergleicht. Plasmonische Meta-Oberflächen übernehmen dieses Konzept, um die optischen Eigenschaften dünner Schichten nach Belieben einzustellen. In Analogie zu natürlichen Materialien wird die optische Antwort einer Meta-Oberfläche durch die Anordnung und plasmonische Kopplung (Hybridisierung) metallischer Mikro- und Nano-Objekte, den sogenannten Meta-Atomen, bestimmt und kann sich stark von den Eigenschaften der Einzelkomponenten unterscheiden. Obwohl traditionelle Direktschreibverfahren ein hohes Maß an Gestaltungsfreiheit in der Nanostrukturierung bieten, ist die Rekonfiguration von Meta-Atomen in der Regel begrenzt. Vor allem ihre räumliche Neuordnung bleibt eine große Herausforderung. Eine Durchstimmbarkeit auch nach der Herstellung zu gewährleisten wäre jedoch entscheidend, um die Miniaturisierung von Geräten und die Realisierung optischer Computer—durch die Einführung dynamisch durchstimmbarer optischer Bauteile und optischer Schalter—voranzutreiben. Diese Dissertation untersucht kolloidale Assemblierung als kostengünstigen Ansatz zur Herstellung von Meta-Oberflächen im cm²-Maßstab, deren optische Eigenschaften durch geometrische Rekonfiguration durchgestimmt werden können. Hydrodynamische Felder und topographische Template steuern die Ablagerung kolloidaler Nanopartikel mit präziser Orientierungs- und/oder Positionskontrolle. Im Verlauf dieser Arbeit wird die Komplexität der Partikelanordnung sukzessive erhöht, um 1-, 2- und 3-dimensionale (1D, 2D, 3D), plasmonische Anordnungen zu realisieren. Eng verbunden mit der Anordnungsgeometrie können verschiedene Aspekte des Lichts gesteuert werden. (I) Die 1D-Ausrichtung von Silbernanodrähten ruft unterschiedliche Transmission für lineare Polarisationszustände hervor (linearer Dichroismus). (II) Einzelpartikel in einem quadratischen 2D-Kristall wechselwirken kohärent, was eine scharfe, sogenannte Oberflächengitterresonanz (surface lattice resonance) erzeugt. Dieser Effekt konzentriert starke elektromagnetische Felder in der Gitterebene, was ihn für plasmonische Laser interessant macht. (III) 3D-chirale, über Kreuz geschichtete Partikelketten beeinflussen die Transmission zirkularer Polarisationszustände (zirkularer Dichroismus). Die einzigartigen Vorzüge der kolloidalen Assemblierung werden aufgezeigt. (I) Die Sprühbeschichtung ermöglicht eine rasche Abscheidung orientierter Silbernanodrähte auf großen Flächen und lässt sich mit kontinuierlicher Fertigung (Rolle-zu-Rolle) verbinden. Mit Hilfe faltenstrukturierter Substrate können Gradienten mit kontinuierlich variierendem Lineardichroismus in einem einzigen Schritt erzeugt werden. (II) Partikelanordnung mittels Kapillarkräften ermöglicht Partikelabstände von ~1 nm, was mit herkömmlichen, lithographischen Methoden nicht erreichbar ist. Dieser geringe Abstand verbessert die Plasmonenkopplung zwischen den Partikeln und verstärkt den Zirkulardichroismus in gekreuzten, chiralen Partikelketten, wie in dieser Arbeit vorgestellt wird. (III) Solche hierarchischen und wiederholt stapelbaren, chiralen Strukturen machen große Volumina an superchiralen Feldern für Analytmoleküle zugänglich, was deren ultrasensitive, enantioselektive Detektion ermöglicht. Dies steht in starkem Gegensatz zu gestapelten, lithographisch hergestellten Nanostäbchen, bei denen die stärksten Felder im Zwischenschichtspalt durch die Anwesenheit von Abstandsschichten versperrt bleiben. Ein zentrales Thema dieser Arbeit ist die Rekonfiguration der vorgestellten Systeme im Anschluss an deren Fertigung. Diese in-situ-Durchstimmbarkeit wird durch elastische und reversibel stapelbare Template realisiert. (I) Mechanische Deformation entlang einer Achse überführt den quadratischen 2D-Kristall in einen rechteckigen. Dadurch wird die Oberflächengitterresonanz in zwei polarisationsabhängige Moden aufgespalten, deren Resonanzposition unter Krafteinwirkung reversibel verschoben wird. (II) Die über Kreuz gestapelten, chiralen Partikelketten sind wiederholt stapelbar. Dies ermöglicht die Anpassung des Stapelwinkels, um die Stärke und das Vorzeichen des Zirkulardichroismus einzustellen. (III) Reversible Kompression dieses chiralen Stapels verursacht ein Verbiegen der Ketten und verschiebt so die spektrale Position der zirkulardichroitischen Moden. In einer Machbarkeitsstudie konnte gezeigt werden, dass lokal variierende Kompression einen Gradienten des Zirkulardichroismus hervorruft. Dies stellt einen wichtigen Schritt in Richtung Ein-Chip-Spektroskopie dar. Diese Arbeit (I) lotet die Grenzen der kolloidalen Assemblierung aus, indem sie von Einzelpartikel-Anordnungen zu komplexen 3D-Arrangements übergeht; (II) untersucht die geometrische Rekonfiguration dieser plasmonischen Nanostrukturen, um ausgeprägte optische Effekte zu modulieren. Die hier vorgestellten Strategien können auf andere kolloidale Partikelformen und materialien übertragen werden. Darüber hinaus bereiten die Konzepte wiederholt stapelbarer Meta-Oberflächen und der lokalen Kompression zum Einstellen der optischen Eigenschaften eine faszinierende Spielwiese. Auch der Top-Down-Fertigung könnten diese Ansätze als Blaupause dienen.
276

Single-cell mechanical phenotyping across timescales and cell state transitions

Urbanska, Marta 25 January 2022 (has links)
Mechanical properties of cells and their environment have an undeniable impact on physiological and pathological processes such as tissue development or cancer metastasis. Hence, there is a pressing need for establishing and validating methodologies for measuring the mechanical properties of cells, as well as for deciphering the molecular underpinnings that govern the mechanical phenotype. During my doctoral research, I addressed these needs by pushing the boundaries of the field of single-cell mechanics in four projects, two of which were method-oriented and two explored important biological questions. First, I consolidated real-time deformability cytometry as a method for high-throughput single-cell mechanical phenotyping and contributed to its transformation into a versatile image-based cell characterization and sorting platform. Importantly, this platform can be used not only to sort cells based on image-derived parameters, but also to train neural networks to recognize and sort cells of interest based on raw images. Second, I performed a cross-laboratory study comparing three microfluidics-based deformability cytometry approaches operating at different timescales in two standardized assays of osmotic shock and actin disassembly. This study revealed that while all three methods are sensitive to osmotic shock-induced changes in cell deformability, the method operating at the shortest timescale is not suited for detection of actin cytoskeleton changes. Third, I demonstrated changes in cell mechanical phenotype associated with cell fate specification on the example of differentiation and de-differentiation along the neural lineage. In the process of reprogramming to pluripotency, neural precursor cells acquired progressively stiffer phenotype, that was reversed in the process of neural differentiation. The stiff phenotype of induced pluripotent stem cells was equivalent to that of embryonic stem cells, suggesting that mechanical properties of cells are inherent to their developmental stage. Finally, I identified and validated novel target genes involved in the regulation of mechanical properties of cells. The targets were identified using machine learning-based network analysis of transcriptomic profiles associated with mechanical phenotype change, and validated computationally as well as in genetic perturbation experiments. In particular, I showed that the gene with the best in silico performance, CAV1, changes the mechanical properties of cells when silenced or overexpressed. Identification of novel targets for mechanical phenotype modification is crucial for future explorations of physiological and pathological roles of cell mechanics. Together, this thesis encompasses a collection of contributions at the frontier of single-cell mechanical characterization across timescales and cell state transitions, and lays ground for turning cell mechanics from a correlative phenomenological parameter to a controllable property.:Abstract Kurzfassung List of Publications Contents Introduction Chapter 1 — Background 1.1. Mechanical properties as a marker of cell state in health and disease 1.2. Functional relevance of single-cell mechanical properties 1.3. Internal structures determining mechanical properties of cells 1.4. Cell as a viscoelastic material 1.5. Methods to measure single-cell mechanical properties Aims and scope of this thesis Chapter 2 — RT-DC as a versatile method for image-based cell characterization and sorting 2.1. RT-DC for mechanical characterization of cells 2.1.1. Operation of the RT-DC setup 2.1.2. Extracting Young’s modulus from RT-DC data 2.2. Additional functionalities implemented to the RT-DC setup 2.2.1. 1D fluorescence readout in three spectral channels 2.2.2. SSAW-based active cell sorting 2.3. Beyond assessment of cell mechanics — emerging applications 2.3.1. Deformation-assisted population separation and sorting 2.3.2. Brightness-based identification and sorting of blood cells 2.3.3. Transferring molecular specificity into label-free cell sorting 2.4. Discussion 2.5. Key conclusions 2.6. Materials and experimental procedures 2.7. Data analysis Chapter 3 — A comparison of three deformability cytometry classes operating at different timescales 3.1. Results 3.1.1. Representatives of the three deformability cytometry classes 3.1.2. Osmotic shock-induced deformability changes are detectable in all three methods 3.1.3. Ability to detect actin disassembly is method-dependent 3.1.4. Strain rate increase decreases the range of deformability response to actin disassembly in sDC 3.2. Discussion 3.3. Key conclusions 3.4. Materials and methods Chapter 4 — Mechanical journey of neural progenitor cells to pluripotency and back 4.1. Results 4.1.1. fNPCs become progressively stiffer during reprogramming to pluripotency 4.1.2. Transgene-dependent F-class cells are more compliant than ESC-like iPSCs 4.1.3. Surface markers unravel mechanical subpopulations at intermediate reprogramming stages 4.1.4. Neural differentiation of iPSCs mechanically mirrors reprogramming of fNPCs 4.1.5. The closer to the pluripotency, the higher the cell stiffness 4.2. Discussion 4.3. Key conclusions 4.4. Materials and methods Chapter 5 — Data-driven approach for de novo identification of cell mechanics regulators 5.1. Results 5.1.1. An overview of the mechanomics approach 5.1.2. Model systems characterized by mechanical phenotype changes 5.1.3. Discriminative network analysis on discovery datasets 5.1.4. Conserved functional network module comprises five genes 5.1.5. CAV1 performs best at classifying soft and stiff cell states in validation datasets 5.1.6. Perturbing expression levels of CAV1 changes cells stiffness 5.2. Discussion 5.3. Key conclusions 5.4. Materials and methods Conclusions and Outlook Appendix A Appendix B Supplementary Tables B.1 – B.2 Supplementary Figures B.1 – B.9 Appendix C Supplementary Tables C.1 – C.2. Supplementary Figures C.1 – C.5 Appendix D Supplementary Tables D.1 – D.6 Supplementary Figures D.1 – D.7 List of Figures List of Tables List of Abbreviations. List of Symbols References Acknowledgements
277

Der Sauerstoffverbrauch der Lunge (VO2pulm) bei Patienten mit Acute Lung Injury (ALI) und Acute Respiratory Distress Syndrome (ARDS) unter mechanischer Beatmung und PEEP-Variation, gemessen als VO2-Differenz zwischen indirekter Kalorimetrie und Berechnung über das inverse Fick´ sche Prinzip

Fritzsche, Katrin 27 November 2007 (has links)
Bei Patienten mit einem akuten Lungenversagen (ALI oder ARDS) ist der Sauerstoffverbrauch der Lunge (VO2pulm) durch pathophysiologische Prozesse insbesondere die Ausbildung von Atelektasen stark beeinträchtigt. Aufgrund der Annahme, dass eine Steigerung der Anzahl ventilierter Lungenareale zu einer Erhöhung des pulmonalen Sauerstoffverbrauchs führt, haben wir den Einfluss eines definierten Rekrutierungsmanövers (PEEP/PEAK + 10 cmH2O) auf den pulmonalen Sauerstoffverbrauch (VO2pulm), pulmonalen kapillären Blutfluss (PCBF), der den nicht geshunteten Anteil am HZV darstellt, und den transpulmonalen Shunt (Qs/Qt) untersucht. In der vorliegenden Studie wurde der VO2pulm als Differenz zwischen dem Sauerstoffverbrauch des gesamten Körpers, gemessen über die indirekte Kalorimetrie (VO2cal), und dem über das inverse Fick`sche Prinzip errechneten Sauerstoffverbrauch (VO2Fick) bestimmt. Im Rahmen einer klinisch-prospektiven Studie konnten nach Annahme des Studienprotokolls durch die zuständige Ethikkommission 13 beatmete Patienten, welche die Consensus-Kriterien eines ALI oder ARDS erfüllten, eingeschlossen werden. Nach Sicherstellung einer adäquaten Volumensituation und Messung der Ausgangsparameter wurde der PEEP um 10 cmH2O erhöht. Um ein stabiles Atemzugvolumen (VT 6-8 ml/kgKG) und damit gleichbleibende Bedingungen für die alveoläre Ventilation bis auf das von uns durchgeführte Rekrutierungsmanöver zu gewährleisten, wurde zeitgleich der Spitzendruck ebenfalls um 10 cmH2O erhöht. Nach 15 und 60 min wurden die Zieldeterminanten pulmonaler Sauerstoffverbrauch (VO2pulm), PCBF und transpulmonaler Shunt erneut bestimmt. Die Messung der indirekten Kalorimetrie (VO2cal) wurde mit dem Deltatrac TM, MBM 200® durchgeführt, VO2Fick über die Thermodilutionsmethode ermittelt, die partielle CO2-Rückatmungsmethode (David®) zur Bestimmung des PCBF genutzt und der transpulmonale Shunt (Qs/Qt) mittels der Formel nach BERGGREN berechnet. Die statistische Auswertung der Daten erfolgte mittels T-Tests für gepaarte Stichproben. Nach dem Manöver konnte eine signifikante Steigerung des PCBF von 4,44 ± 1,15 l/min auf 5,4 ± 1,68 l/min nach 15 min, respektive 5,12 ± 1,67 l/min nach 60 min nachgewiesen werden (p<0,025). Dieser Anstieg wurde von einer signifikanten Reduktion des transpulmonalen Shunts (Qs/Qt) von 0,24 ± 0,08 auf 0,16 ± 0,07 nach 15 min und 0,16 ± 0,07 nach 60 min begleitet (p<0,005). Diese Veränderungen der pulmonalen Hämodynamik gehen mit statistisch relevanten Verbesserungen der Oxygenierung sowie der Atemmechanik einher. Eine signifikante Steigerung des pulmonalen Sauerstoffverbrauchs konnte für die gesamte Studienpopulation nicht festgestellt werden. In dieser Untersuchung steigt der Sauerstoffverbrauch der Lunge deskriptiv von baseline 10,1 +/- 30,59 ml/min über 11,42 +/- 27,42 ml/min nach 15 min, respektive auf 28,69 +/- 56,75 ml/min nach 60 min an. Die signifikante Steigerung des pulmonal-kapillären Blutflusses und die konsekutive Reduktion des transpulmonalen Shunts schon 15 min nach dem Manöver impliziert einen Anstieg der an der alveolären Ventilation teilnehmenden alveolokapillären Einheiten, was einer Rekrutierung von vorher atelektatischen Lungenabschnitten entspricht. Insbesondere bei ARDS-Patienten und Respondern konnten Rekrutierungs-induzierte Veränderungen detektiert werden, wohingegen die Patienten mit ALI oder Nonresponder keinerlei statistische Unterschiede während der Intervention zeigten. Trotz stattgefundener Wiederbelüftung von Atelektasen konnte ein statistisch relevanter Unterschied bezüglich des pulmonalen Sauerstoffverbrauchs durch das Rekrutierungsmanöver für die gesamte Studienpopulation nicht festgestellt werden.
278

Der Fuß als sensorisches Organ - Einflussgrößen der Sensorik, deren Wirkmechanismen und daraus abgeleitete bewegungstherapeutische Maßnahmen

Zippenfennig, Claudio 01 July 2022 (has links)
Im Fokus der vorliegenden kumulativ angefertigten Arbeit stehen vier wissenschaftliche Untersuchungen, deren Thematik die Vibrationssensorik des Menschen darstellt. Die aus Vibrationen gewonnenen Informationen führen zu wichtigen Regulationsmechanismen zum Beispiel zur Aufrechterhaltung des Gleichgewichtes und des Ganges. Die Ermittlung von sogenannten Vibrationswahrnehmungsschwellen stellt eine Möglichkeit zur Quantifizierung des Funktionszustandes des somatosensorischen Systems dar. In diesem Zusammenhang ist die Kontrolle und Standardisierung einflussnehmender Messbedingungen auf die Bewertung der Vibrationssensorik wichtig. Im ersten Beitrag der vorliegenden Arbeit rückt die Rolle der Auflagekraft, mit welcher der Stößel der Messgeräte die zu untersuchende Hautpartie belastet, in den Fokus (Studie I). In den sich anschließenden Beiträgen werden die Wirkmechanismen der mechanischen Hauteigenschaften auf die Wahrnehmung von Vibrationen aus evolutionsbiologischer (Studie II) und pathologischer (Studie III) Sichtweise betrachtet. Im letzten Beitrag wird die potentielle Wirkung von unterschwelligen Rauschstimulationen als mögliche bewegungstherapeutische Maßnahme zur Verbesserung der sensorischen Leistungsfähigkeit untersucht (Studie IV). Am Ende der Arbeit erfolgt die übergreifende Diskussion der einzelnen Beiträge. Mit Hilfe der gewonnen Erkenntnisse werden Handlungsempfehlungen zur Verbesserung der Quantifizierung der Vibrationssensorik in klinischen und wissenschaftlichen Bereichen abgeleitet. Das erweiterte Verständnis über die Wirkmechanismen verschiedener Einflussgrößen auf die Vibrationssensorik unterstützt die gezielte Erforschung von bewegungstherapeutischen Maßnahmen zur Steigerung der sensorischen Leistungsfähigkeit des Menschen. / The focus of the present cumulative dissertation is on four scientific investigations that deal with the human vibration sensory system. The information obtained from vibrations leads to important regulatory mechanisms, for example to maintain balance and gait. Determining so-called vibration perception thresholds represents a possibility to quantify the functional condition of the somatosensory system. In this context, it is important to control and standardize the measurement conditions that influence the evaluation of the vibration sensory system. The first article of the present dissertation focuses on the role of the contact force with which the probe of a measuring device loads the skin area to be examined (Study I). In the subsequent contributions, the action mechanisms of mechanical skin properties regarding vibration perception are considered from an evolutionary (Study II) and pathological (Study III) point of view. In the last paper, the potential effect of subliminal noise stimulation is examined as a possible exercise therapy intervention to improve sensory performance (Study IV). A comprehensive discussion of the individual contributions is included at the end of the present dissertation. Using the gained knowledge, recommendations are derived to improve the quantification of vibration sensation in clinical and scientific areas. The broadened understanding of the mechanisms of action of different influencing variables regarding vibration sensation supports the targeted research of exercise therapy interventions to increase sensory performance in humans.
279

Selective decontamination of the digestive tract in colorectal surgery reduces anastomotic leakage and costs: a propensity score analysis

Bogner, Andreas, Stracke, Maximilian, Bork, Ulrich, Wolk, Steffen, Pecqueux, Mathieu, Kaden, Sandra, Distler, Marius, Kahlert, Christoph, Weitz, Jürgen, Welsch, Thilo, Fritzmann, Johannes 22 February 2024 (has links)
Purpose Anastomotic leakage (AL) and surgical site infection (SSI) account for most postoperative complications in colorectal surgery. The aim of this retrospective trial was to investigate whether perioperative selective decontamination of the digestive tract (SDD) reduces these complications and to provide a cost-effectiveness model for elective colorectal surgery. Methods All patients operated between November 2016 and March 2020 were included in our analysis. Patients in the primary cohort (PC) received SDD and those in the historical control cohort (CC) did not receive SDD. In the case of rectal/sigmoid resection, SDD was also applied via a transanally placed Foley catheter (TAFC) for 48 h postoperatively. A propensity score-matched analysis was performed to identify risk factors for AL and SSI. Costs were calculated based on German diagnosis-related group (DRG) fees per case. Results A total of 308 patients (154 per cohort) with a median age of 62.6 years (IQR 52.5–70.8) were analyzed. AL was observed in ten patients (6.5%) in the PC and 23 patients (14.9%) in the CC (OR 0.380, 95% CI 0.174–0.833; P = 0.016). SSI occurred in 14 patients (9.1%) in the PC and 30 patients in the CC (19.5%), representing a significant reduction in our SSI rate (P = 0.009). The cost-effectiveness analysis showed that SDD is highly effective in saving costs with a number needed to treat of 12 for AL and 10 for SSI. Conclusion SDD significantly reduces the incidence of AL and SSI and saves costs for the general healthcare system.
280

On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces

Bonati, M., Wittwer, L. D., Aland, S., Fischer-Friedrich, E. 22 February 2024 (has links)
The actin cortex of an animal cell is a thin polymeric layer attached to the inner side of the plasma membrane. It plays a key role in shape regulation and pattern formation on the cellular and tissue scale and, in particular, generates the contractile ring during cell division. Experimental studies showed that the cortex is fluid-like but highly viscous on long time scales with a mechanics that is sensitively regulated by active and passive cross-linker molecules that tune active stress and shear viscosity. Here, we use an established minimal model of active surface dynamics of the cell cortex supplemented with the experimentally motivated feature of mechanosensitivity in cross-linker binding dynamics. Performing linear stability analysis and computer simulations, we show that cross-linker mechanosensitivity significantly enhances the versatility of pattern formation and enables self-organized formation of contractile rings. Furthermore, we address the scenario of concentration-dependent shear viscosities as a way to stabilize ring-like patterns and constriction in the mid-plane of the active surface.

Page generated in 0.0809 seconds