• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 23
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Signaling Mechanisms Regulating Neuronal Growth Cone Dynamics

Tornieri, Karine 21 November 2008 (has links)
During the development of the nervous system, neurons migrate to their final location and extend neurites that navigate long distances in the extracellular environment to reach their synaptic targets. The proper functioning of the nervous system depends on correct connectivity, and mistakes in the wiring of the nervous system lead to brain abnormalities and mental illness. Growth cones are motile structures located at the tip of extending neurites that sense and respond to guidance cues encountered along the path toward their targets. Binding of these cues to receptors located on growth cone filopodia and lamellipodia triggers intracellular signaling pathways that regulate growth cone cytoskeletal dynamics. Although studies on extracellular cues and their effects on neuronal guidance are well documented, less is known about the intracellular signaling mechanisms that regulate growth cone motility. This dissertation focuses on two signaling pathways and describes how they might be involved in determining growth cone morphology during neuronal development. The specific aims of this work address: (1) the role of phosphatidylinositol-3-kinase (PI-3K) and its downstream signaling pathway in regulating growth cone motility, and (2) the effect of nitric oxide (NO) release from a single cell on growth cone morphology of neighboring neurons. This study employs defined neurons from the pond snail, Helisoma trivolvis, to demonstrate that inhibition of PI-3K induces a concomitant increase in filopodial length and a decrease in the rate at which neurites advance. These effects are mediated through the lipid and protein kinase activities of PI-3K, and filopodial elongation is due to an increase in the rate at which filopodia elongate and the time that individual filopodia spend extending. Additionally, this study demonstrates that NO release from a single cell can affect growth cone dynamics on neighboring neurons via soluble guanylyl cyclase (sGC), and that NO has a physiological effect up to a distance of 100 ìm. Overall this study provides new information on cellular mechanisms regulating growth cone motility, and suggests a potential role of PI-3K and NO in neuronal pathfinding in vivo.
22

Regenerative Thermal Oxidation of Volatile Organic Compounds(VOCs) in Air Streams

Lee, wei-sehn 22 July 2000 (has links)
Performance studies on the treatment of VOCs in air streams by a pilot-scale regenerative catalytic oxidizer (RCO) and a full-scale regenerative thermal oxidizer (RTO) were conducted. The pilot-scale RCO was constructed with two 20-cm x 200-cm (inside diameter x packing height) regenerative beds packed with gravel (average particle size = 1.25 cm) used as the thermal regenerative solid material. Experimental results indicate that destruction efficiencies of 97 and 90%, respectively, were obtained for methyl ethyl ketone and toluene at a superficial gas velocity of 0.372 m/s (evaluated at 25¢J) and a maximum bed temperature of 400¢J. It was estimated that an electrical thermal energy of approximately 84 kWh was required for treating 1,000 m3 of the waste air stream by the RCO. The full-scale RTO was constructed with two regenerative beds of 100-cm square x 200-cm height packed with the gravel used in the RCO. A paint solvent containing methyl ethyl ketone, ethyl benzene, xylenes, and ethyl acetate was used for the target VOCs. Experimental results indicate that, at a superficial gas velocity of 0.372 m/s (evaluated at 25¢J), VOC destruction efficiencies of 84, 92, 95 and 98% were obtained for the beds at temperature ranges of 200-300, 300-500, 400-700, and 500-700¢J. These conditions corresponded to empty gas retention times of 1.07, 0.85, 0.41, and 0.39s, respectively, for the cited temperature ranges. Finally, it was estimated that electrical watts of approximately 0.10, 0.45, 1.78, 2.43 kWh were required for treating 1,000 m3 of the waste air stream, respectively, at bed temperature ranges of 200-300, 300-500, 400-700, and 500-700¢J.
23

Structure Based Ligand Design for Monoamine Transporters and Mitogen Activated Kinase 5

Manepalli, Sankar 15 March 2012 (has links)
Depression is a major psychological disorder that affects a person's mental and physical abilities. The National Institute of Mental Health (NIMH) classified it as a serious medical illness. It causes huge economic, as well as financial impact on the people, and it is also becoming a major public health issue. Antidepressant drugs are prescribed to mitigate the suffering caused by this disorder. Different generations of antidepressants have been developed with dissimilar mechanisms of action. According to the Center for Disease Control, the usage of antidepressants has skyrocketed by 400 percent increase over 2005- 2008 survey period. This dramatic rise in usage indicates that these are the most prescribed drugs in the US. Even with the FDA mandated "black box" warning of increased suicidal thoughts upon use of selected antidepressants, these drugs are still being used at a higher rate. <br>All classes of antidepressants are plagued by side effects with mainly sexual dysfunction common among them. To avoid the adverse effects, an emphasis is to discover novel structural drug scaffolds that can be further developed as a new generation of antidepressants. The importance of this research is to discover structurally novel antidepressants by performing in silico virtual screening (VS) of chemical databases using the serotonin transporter (SERT). In the absence of a SERT crystal structure, a homology model was developed. The homology model was utilized to develop the first structure-based pharmacophore for the extracellular facing secondary ligand binding pocket. The pharmacophore captured the necessary drug-SERT interaction pattern for SERT inhibitory action. This pharmacophore was employed as one of the filters for VS of candidate ligands. The ten compounds identified were purchased and tested pharmacologically. Out of the ten hits, three structurally novel ligands were identified as lead compounds. Two of these compounds exhibited selectivity towards SERT; the remaining lead compound was selective towards the dopamine transporter and displayed cocaine inhibition. The two SERT selective compounds will provide new opportunities in the development of novel therapeutics to treat depression. <br>For dopamine transporter (DAT), the study was based on recently developed structurally diverse photo probes. In an effort to better understand the binding profile similarities among these different scaffolds, the photo probes were docked into DAT. The finger print analysis of the interaction pattern of docked poses was performed to identify the inhibitor-binding sites. <br>For mitogen activated protein kinase 5 (MEK5), given the lack of structural information, a homology model of MEK5 was developed to guide the rational design of inhibitors. Docking of known MEK5 inhibitors into the homology model was performed to understand the inhibitory interaction profile. Several series of analogues were designed utilizing the generated interaction profile. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
24

Drug combination strategies to abrogate resistance in NRAS mutant melanoma

Najem, Ahmad 11 September 2017 (has links)
Melanoma is the deadliest form of skin cancer and one of the most difficult cancers to treat. Gene alterations identified in melanoma pointed to distinct molecular subsets of tumors with direct implications in therapeutic strategies. Activating mutations in NRAS, found in 20-30% of melanomas have been associated with aggressive clinical behavior and a poor prognosis. Nevertheless, there is lack of effective targeted therapies for NRAS mutant melanoma.Out of the few MEK inhibitors, pimasertib, a potent inhibitor of both MEK1 and MEK2 has showed promising results in NRAS mutant advanced melanoma. However, as a single agent and similar to other MEK inhibitors, it showed a limited clinical benefit due to its rather cytostatic effect and high toxicity. Our and other preliminary studies clearly indicated a stimulation of MITF (Microphthalmia associated transcription factor), the master transcription factor regulating cell growth and differentiation in the melanocyte, under MEK inhibition challenge. Thus, in a context where the tumor suppressor p53 is largely inactivated in melanoma, the stimulation of MITF may be the cause of the restraint cytotoxic effects of MEK inhibitors. Therefore, we aimed to further investigate the downstream MITF targets that can explain the resistance to the drugs.First, we showed that, MEK inhibition (by Pimasertib) led to a significant inhibition of cell proliferation but with a very limited effect on apoptosis that may be explained by the systematic MITF upregulation in all lines tested. Indeed, Mimicking MITF activation of expression by stimulating cAMP conferred resistance to MEK inhibition and interestingly up-regulated Bcl-2 expression. Further evidence was provided by the fact that, acquired resistance to MEK inhibition is associated with substantial upregulation of the anti-apoptotic signaling MITF/Bcl-2. More importantly, selective Bcl-2 inhibition by ABT-199 or Bcl-2 knock out using CRISPER/Cas9 system restores the sensitivity of NRAS mutant melanoma cells to MEK inhibition and breaks the acquired resistance.Given the known p53 regulating effect on Bcl-2, we evaluated p53 reactivation by PRIMA-1Met (APR-246) under MEK inhibition on the promotion of apoptosis in a panel of Q61NRAS mutant melanoma cells. Strikingly and similarly, this combination not only resulted in a synergistic effect to induce massive apoptosis but also broke resistance to MEK inhibitors both in cells with wild type or mutant p53 alike.In conclusion, we showed that the activation of cAMP/MITF/Bcl-2 pathway is a main anti-apoptotic mechanism associated with resistance to MEK inhibition in NRAS mutant melanoma. We propose drug combinations cotargeting MEK and other proteins regulating apoptosis -p53/Bcl-2- as a promising and clinically relevant therapeutic strategy to not only act in synergy to cause massive apoptosis but also to overcome resistance to MEK inhibitors in NRAS mutant melanoma / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
25

Trametinib Attenuates Delayed Rejection and Preserves Thymic Function in Rat Lung Transplantation / MEK阻害剤トラメチニブはラット肺移植モデルにおいて遅発性拒絶反応を抑制し胸腺機能を温存する

Takahagi, Akihiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23099号 / 医博第4726号 / 新制||医||1050(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 濵﨑 洋子, 教授 浅野 雅秀, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
26

The Toll-Like Receptor 9 Agonist, CpG-Oligodeoxynucleotide 1826, Ameliorates Cardiac Dysfunction After Trauma-Hemorrhage

Zhang, Xia, Gao, Ming, Ha, Tuanzhu, Kalbfleisch, John H., Williams, David L., Li, Chuanfu, Kao, Race L. 01 August 2012 (has links)
Cardiovascular collapse is the major factor contributing to the mortality of trauma-hemorrhage (T-H) patients. Toll-like receptors (TLRs) play a critical role in T-H-induced cardiac dysfunction. This study evaluated the role of TLR9 agonist, CpG-oligodeoxynucleotide (ODN) 1826, in cardiac functional recovery after T-H. Trauma-hemorrhage was induced in a murine model by soft tissue injury and blood withdrawals from the jugular vein to a mean arterial pressure of 35 ± 5 mmHg. Mice were treated with CpG-ODN 1826 (10 μg/30 g body weight) by intraperitoneal injection 1 h before T-H (n = 5-8/group). Hemodynamic parameters were measured before, during hemorrhage, and at 60 min after T-H. Trauma-hemorrhage significantly decreased the mean arterial pressure and left ventricular pressure compared with sham controls. In contrast, CpG-ODN administration significantly attenuated the decrease in arterial pressure and left ventricular pressure due to T-H. Trauma-hemorrhage markedly decreased myocardial levels of phosphorylated Akt by 57.9%. However, CpG-ODN treatment significantly blunted the decrement in phospho-Akt by activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY294002 partially abolished CpG-induced cardioprotection, indicating that additional signaling pathways are involved in the protective effect of CpG-ODN after T-H. We observed that CpG-ODN treatment also significantly attenuated the decrease in myocardial phospho-ERK levels after T-H. Inhibition of ERK by U0126 also partially abolished the cardioprotective effect of CpG-ODN after T-H. Our data suggest that CpG-ODN significantly attenuates T-H-induced cardiac dysfunction. The mechanisms involve activation of both PI3K/Akt and ERK signaling pathways. The TLR9 agonist, CpG-ODN 1826, may provide a novel treatment strategy for preventing or managing cardiac dysfunction and enhancing recovery in T-H patients.
27

Essential Role of ERK Activation in Neurite Outgrowth Induced by α-Lipoic Acid

Wang, Xiaohui, Wang, Zhuyao, Yao, Yuzhen, Li, Jingjin, Zhang, Xiaojin, Li, Chuanfu, Cheng, Yunlin, Ding, Guoxian, Liu, Li, Ding, Zhengnian 01 May 2011 (has links)
Background: Neurite outgrowth is an important aspect of neuronal plasticity and regeneration after neuronal injury. Alpha-lipoic acid (LA) has been used as a therapeutic approach for a variety of neural disorders. We recently reported that LA prevents local anesthetics-induced neurite loss. In this study, we hypothesized that LA administration promotes neurite outgrowth. Methods: To test our hypothesis, we treated mouse neuroblastoma N2a cells and primary neurons with LA. Neurite outgrowth was evaluated by examination of morphological changes and by immunocytochemistry for α-tubulin-3. ROS production was examined, as were the phosphorylation levels of ERK and Akt. In separate experiments, we determined the effects of the inhibition of ERK or PI3K/Akt as well as ROS production on LA-induced neurite outgrowth. Results: LA promoted significantly neurite outgrowth in a time- and concentration-dependent manner. LA stimulation significantly increased the phosphorylation levels of both Akt and ERK and transiently induced ROS production. PI3K/Akt inhibition did not affect LA-induced neurite outgrowth. However, the inhibition of ERK activation completely abolished LA-induced neurite outgrowth. Importantly, the prevention of ROS production by antioxidants attenuated LA-stimulated ERK activation and completely abolished LA-promoted neurite outgrowth. Conclusion: Our data suggest that LA stimulates neurite outgrowth through the activation of ERK signaling, an effect mediated through a ROS-dependent mechanism. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
28

MEK/ERKs Signaling Is Essential for Lithium-Induced Neurite Outgrowth in N2a Cells

Wang, Zhuyao, Wang, Juan, Li, Jingjin, Wang, Xiaohui, Yao, Yuzhen, Zhang, Xiaojin, Li, Chuanfu, Cheng, Yunlin, Ding, Guoxian, Liu, Li, Ding, Zhengnian 01 June 2011 (has links)
Lithium, a drug used for the treatment of bipolar disorder, has been shown to affect different aspects of neuronal development such as neuritogenesis, neurogenesis and survival. The underlying mechanism responsible for lithium's influence on neuronal development, however, still remains to be elucidated. In the present study, we demonstrate that lithium increases the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt) and promotes neurite outgrowth in mouse N2a neuroblastoma cells (N2a). The inactivation of mitogen-activated protein kinase kinase (MEK)/ERKs signaling with a MEK inhibitor inhibits neurite outgrowth, but it enhances Akt activation in lithium-treated N2a cells. Furthermore, the inactivation of phosphoinositide-3-kinase (PI3K)/Akt signaling with a PI3K inhibitor increases both lithium-induced ERKs activation and lithium-induced neurite outgrowth. Taken together, our study suggests that lithium-induced neurite outgrowth in N2a cells is regulated by cross-talk between the MEK/ERKs and PI3K/Akt pathways and requires the activation of the MEK/ERKs signaling.
29

プラナリアの再生におけるMAPKシグナル経路の機能解析

細田, 和孝 23 May 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19884号 / 理博第4211号 / 新制||理||1605(附属図書館) / 32961 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 杤尾 豪人, 教授 高田 彰二, 教授 青山 卓史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
30

Activation of Ca<sup>2+</sup>-activated K<sup>+</sup> Channels and Cell Migration by Hepatocyte Growth Factor/Scatter Factor in Madin-Darby Canine Kidney Cells.

Jin, Min 14 December 2002 (has links) (PDF)
Hepatocyte Growth Factor/Scatter Factor (HGF/SF) stimulates migration of various cells and has been linked via Met tyrosine kinase signaling to transformation and the metastatic phenotype. HGF/SF-Met signaling also plays a role in malignancy. Migration of transformed MDCK-F cells depends on activation of a charybdotoxin (ChTX)-sensitive, volume-activated membrane K+ current. Patch-clamp electrophysiology and transwell migration assays were used to study the effects of HGF/SF on membrane K+ currents and cell migration in MDCK II cells. HGF/SF activated membrane K+ currents that increased over 24 hr, and these could be modulated by altering intracellular free calcium concentration [Ca2+]i. HGF/SF also significantly increased MDCK II cell migration. Specific Ca2+-activated K+ channel blockers, ChTX, iberiotoxin (IbTX), stichodactyla toxin (Stk) and clotrimazole (CLT) inhibited HGF/SF stimulation of membrane K+ currents and cell migration. This suggests that the activation of Ca2+-activated K+ channels is necessary for HGF/SF stimulation of MDCK II cell migration. Furthermore, HGF/SF induced ERK phosphorylation, and addition of the MEK inhibitor PD98059 inhibited ERK phosphorylation, as well as HGF/SF stimulation of Ca2+-activated K+ currents and cell migration in MDCK II cells. Taken together, HGF/SF induces phosphorylation of ERK, which plays a role in HGF/SF activation of Ca2+-activated K+ channels and enhancing cell migration in MDCK II cells.

Page generated in 0.0444 seconds