101 |
Tratamento termofílico de efluentes de máquina de papel utilizando biorreator a membranas / Thermophilic treatment of paper machine effluent in a membrane bioreactorSousa, Cláudio Arcanjo de 28 February 2008 (has links)
Made available in DSpace on 2015-03-26T12:26:57Z (GMT). No. of bitstreams: 1
texto completo.pdf: 2077124 bytes, checksum: 59f01201db0c813515df97522a0e48f4 (MD5)
Previous issue date: 2008-02-28 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Paper mill industrial processes consume large quantities of water consequently leading to large mill effluent volumes. One way to reduce water consumption is by increasing water reuse in the paper mill. Direct water reuse is not always possible because of poor effluent quality and effluent treatment may be necessary to permit reuse. Membrane bioreactors are a new treatment technology that are little used, mainly due to the lack of scientific and technical knowledge of their implementation. The present study examined the technical viability of thermophilic treatment of paper machine effluents in a membrane bioreactor. The studied was divided into three experiments. The main objective of the first experiment was to compare performance of laboratory-scale conventional activated sludge (CAS) and a membrane bioreactor (MBR) with 0,02µm porosity membranes in treating printing and writing paper machine white water at 35, 45 and 55°C. Results showed that the BRM was more efficient that the CAS in removing part of the effluent contaminant load. Average percent removals of chemistry oxygen demand (COD) in the CAS were 70.0, 78.1 and 76.7% and in the MBR 81.4, 81.9 and 78.7% at temperatures of 35, 45 and 55°C, respectively. Treated effluent total suspend solids (TSS) values in the CAS were 39, 54 and 88 mg.L-1 at of 35, 45 and 55°C. No TSS were detected in the MBR treated effluent. Turbidities of effluents treated in the CAS were 16, 35 and 165 NTU at temperatures 35, 45 and 55°C. MBR treated effluent presented no turbidity. Alkalinity and hardness of effluent treated by CAS were lower than for effluent treated by the MBR. The main objective of Experiment II was to compare performance of MBR effluent treatment under mesophilic (35°C), thermotolerant (45°C) and thermophilic (55°C) conditions. In Experiment II an MBR system composed of three reactors operating in parallel at the three different temperatures were used. This experiment was divided into three stages, with different COD loads in each: Stage 1 2.57 Kg.m-3.d-1; Stage II 4.75 Kg.m-3.d-1 and Stage III 9.43 Kg.m-3.d-1. The results showed that the increase in temperature led to reduction in COD removal efficiencies. Removals of COD in Stage I were 95.5, 94.2 and 91.9%, at temperatures of 35, 45 e 55°C, respectively. In Stage II, removal efficiencies were 97.4, 95.6 and 95.0% at 35, 45 and 55°C, respectively. In Stage II, removal efficiencies were 95.6, 93.3 and 89.7% at 35, 45 and 55°C, respectively. No TSS were detected in any of the treated effluents. Treated effluent turbidity increased with increased treatment temperature. Average turbidity of treated effluents were 0.11, 0.24 and 1.13 NTU in Stage I, 0.10, 0.16 and 1.01 NTU in Stage II and 0.87, 2.00 and 4.34 NTU in Stage III for treatment at 35, 45 e 55°C, respectively. Average conductivities of treated effluents were 1812, 1937 and 2927 µS.cm-1 for Stages I, II and III, respectively. Treated effluent color was greater for treatment at 55°C. Average color was 23, 23 and 102 mg.L-1 Pt in Stage I, 31, 36 and 127 mg.L-1 Pt in Stage II and 46, 58 and 163 mg. L-1 Pt in Stage III for temperatures of 35, 45 and 55°C, respectively. Average hardness values in treated effluents were 258, 203 and 160 mg.L-1 in Stage I, 439, 350 and 292 mg.L-1 in Stage II and 639, 565 and 495 mg.L-1 in Stage III, for treatments at 35, 45 and 55°C. No filamentous bacteria were found at 55°C and flocculation was deficient. The main objective of Experiment III was to evaluate sludge microbial diversity in aerobic MBRs operating under mesophilic and thermophilic conditions. It was found that increased temperature reduced reactor sludge microbial diversity and richness. A new microbial community was established above 45°C that differed structurally from the community present in the MBR operated at 35°C. / Fábricas de papel consomem elevadas quantidades de água nos seus processos industriais gerando, conseqüentemente, grande volume de efluentes. Aumentar o reuso de água é uma forma que as empresas encontram para reduzir o consumo de água nas fábricas de papel. A reutilização da água nem sempre é possível devido a sua qualidade, o que requer um tratamento prévio. Biorreatores a membranas constituem uma nova tecnologia de tratamento, ainda pouco utilizada em decorrência do desconhecimento técnico e científico para sua implementação. O presente estudo verificou a viabilidade técnica de utilização de biorreatores a membranas para o tratamento termofílico de efluentes de máquinas de papel. O estudo foi dividido em três experimentos. O objetivo principal do primeiro experimento foi comparar o desempenho de um sistema de tratamento de efluentes por Lodos Ativados Convencional (LAC) e um sistema de tratamento de efluentes por Biorreator a Membranas (BRM), cuja porosidade das membranas era de 0,02µm, para remover os contaminantes orgânicos e inorgânicos presentes na água branca de uma máquina de papel para imprimir e escrever em três diferentes temperaturas: 35, 45 e 55 °C. Neste experimento foram utilizados dois sistemas laboratoriais de tratamento de efluentes composto de um LAC e um BRM. No experimento I, os estudos mostraram que o BRM foi mais eficiente do que o LAC para remover parte dos contaminantes presentes no efluente. As percentagens médias de remoção de DQO para o LAC foram 70, 78,1 e 76,7% e para o BRM foram 81,4, 81,9 e 78,7%, para as temperaturas de 35, 45 e 55°C, respectivamente. As concentrações de SST no efluente tratado no sistema LAC foram 39, 54 e 88 mg.L-1 para as temperaturas de 35, 45 e 55°C. No BRM não foi detectado SST no efluente tratado. A turbidez do efluente tratado pelo LAC foi 16, 35 e 165 UNT para as temperaturas de 35, 45 e 55°C. No BRM não houve turbidez no efluente tratado. As concentrações de alcalinidade e de dureza no efluente tratado para o LAC foram inferiores às taxas obtidas pelo BRM. O objetivo principal do Experimento II foi comparar os desempenhos dos sistemas de tratamentos de efluentes por BRM em condições mesofílica (35°C), termotolerante (45°C) e termofílica (55°C). No Experimento II foi utilizado um sistema de BRM composto de três reatores, operando em paralelo, em três temperaturas diferentes. Este Experimento foi dividido em três etapas, sendo que, cada etapa foi utilizada uma carga diferente de DQO: Etapa I 2,57 Kg.m-3.d-1; Etapa II 4,75 Kg.m-3.d-1 e Etapa III 9,43 Kg.m-3.d-1. Os resultados demonstraram que o aumento da temperatura ocasionou uma redução nas eficiências de remoção de DQO. As taxas de remoções de DQO na Etapa I, para as temperaturas de 35, 45 e 55°C, foram 95,5, 94,2 e 91,9%, respectivamente. Para a Etapa II, as taxas foram 97,4, 95,6 e 95,0% para as temperaturas de 35, 45 e 55°C, respectivamente. Para a Etapa III, as taxas de remoções de DQO foram 95,6, 93,3 e 89,7% para as temperaturas de 35, 45 e 55°C, respectivamente. Em nenhum tratamento foi detectada concentrações de SST no efluente tratado. A turbidez nos efluentes tratados aumentou à medida que aumentou a temperatura dos tratamentos. As médias de turbidez dos efluentes tratados, para a Etapa I, foram 0,11, 0,24 e 1,13 UNT; na Etapa II foram 0,10, 0,16 e 1,01 UNT e na Etapa III foram 0,87, 2,00 e 4,34 UNT para as temperatura de 35, 45 e 55°C, respectivamente. A média das condutividades dos efluentes tratados foram 1812, 1937 e 2927µS.cm-1 para as Etapas I, II e III, respectivamente. A cor nos efluentes tratados foi maior para os tratamentos realizados à temperatura de 55°C. As médias das concentrações de cor, para a Etapa I, foram 23, 23 e 102 mg.L-1 Pt; na Etapa II foram 31, 36 e 127 e na Etapa III foram 46, 58 e 163 mg. L-1 Pt, para as temperaturas de 35, 45 e 55°C, respectivamente. Quanto à concentração de dureza nos efluentes tratados, na Etapa I as médias foram 258, 203 e 160 mg.L-1. Na Etapa II, as médias foram 439, 350 e 292 mg.L-1 e na Etapa III, as médias foram 639, 565 e 495 mg.L-1, para as temperaturas de 35, 45 e 55°C. Não foram encontradas bactérias filamentosas na temperatura de 55°C e a floculação foi deficiente. O Experimento III teve como principal objetivo avaliar a diversidade biológica dos microrganismos em dois BRMs aeróbios, nas condições mesofílica e termofílica. Este experimento verificou que o aumento da temperatura reduziu a diversidade e a riqueza dos microrganismos presentes no lodo. A partir de 45°C estabeleceu-se uma nova comunidade microbiana, diferente das comunidades presentes nos reatores à temperatura de 35°C.
|
102 |
Couplage des procédés membranaires aux techniques physico-chimiques ou biologiques pour le traitement des rejets liquides de l'industrie de textile / Membrane process combined with physico-chemical or biological processes for textile wastewater treatmentHarrlekas, Farida 09 February 2008 (has links)
Le traitement des rejets textiles se fait habituellement via une filière physico-chimique couplée à un traitement biologique. La qualité de l’effluent obtenu obéit difficilement aux normes de recyclage ou de rejet dans le milieu naturel. Dans cet objectif, différentes combinaisons sont proposées: la coagulation floculation (CF) et/ou l’adsorption sur charbon actif (CAP) en poudre couplée aux techniques membranaires (microfiltration (MF) ou ultrafiltration (UF)), la photocatalyse couplée à un traitement aérobie biologique (système membranaire (BRM) ou réacteur discontinu séquentiel (RDS)) ou au traitement anaérobie par voie biologique ou chimique. Une comparaison générale a été réalisée pour optimiser le traitement adéquat. La combinaison CF-CAP-UF est un traitement efficace pour la réduction de la DCO, de la couleur et de la turbidité. La dégradation de deux colorants textiles (azoïque et phthalocyanine) a été étudiée par photocatalyse simple ou combinée à un BRM. Le traitement photocatalytique a été réalisé en présence de dioxyde de titane fixé sur un support en fibres de cellulose dans un réacteur à film tombant en présence d’irradiation UV. Pour les deux types de réacteurs biologiques, bien que la biomasse ait été influencée par la variation de la concentration en colorant et par le mode de fonctionnement continu pour le BRM, elle a pu résister. Après le pré-traitement nous avons obtenu une complète décoloration mais les sous produits photocatalytiques demeurent toxiques et peuvent empêcher l’abattement de la DCO. Dans une dernière partie, nous avons testé le couplage de la photocatalyse à un traitement chimique par hydrogénation catalytique ou biologique par boues granulaires. Cette dernière possibilité s’avère être efficace puisque des taux de décoloration supérieurs à 90% ont été atteints pour différents types de colorants et qu’aucune toxicité des produits obtenus lors du pré-traitement photocatalytique n’a été détectée / The treatment of textile wastewater is usually done by a set of physicochemical processes coupled with a biological treatment. The effluent quality abides with difficulty the norms for reuse or discharge in environment. Various treatment combinations have been tested such as coagulation-flocculation (CF) and adsorption on activated carbon (PAC) coupled with membrane technologies (microfiltration (MF) or ultrafiltration (UF)), photocatalysis coupled with a biological treatment (membrane bioreactor (MBR) or a sequential batch reactor (SBR) or a biological and chemical anaerobic treatment. A general comparison was made to optimise the appropriate treatment. The combination CF-PAC-UF is the most effective of non-biological systems in terms of COD, absorbance and turbidity removal. The degradation of an azoïc and a phthalocyanine textile dyes by simple photocatalysis or combined to a membrane bioreactor has been investigated. Photocatalysis was achieved in a falling film reactor containing titanium dioxide fixed on cellulose fibres under UV irradiation. For both biological systems, although biomass was influenced by the variation of dyes concentration and the continuous operating mode for the MBR, it could resist to the applied conditions. However, even after pre-treatment where full decolouration was achieved, photocatalytic by-products were toxic and could inhibit COD removal. Chemical and biological anaerobic treatment have been applied to textile dyes and combined with a photocatalytic process. Photocatalysis was able to remove more than 90% color from crude as well as autoxidized reduced dye solutions. The photocatalytic end-products were not toxic toward methanogenic bacteria
|
103 |
Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewaterRobles Martínez, Ángel 28 November 2013 (has links)
El reactor anaerobio de membranas sumergidas (SAnMBR) está considerado como tecnología
candidata para mejorar la sostenibilidad en el sector de la depuración de aguas residuales,
ampliando la aplicabilidad de la biotecnología anaerobia al tratamiento de aguas residuales de
baja carga (v.g. agua residual urbana) o a condiciones medioambientales extremas (v.g. bajas
temperaturas de operación). Esta tecnología alternativa de tratamiento de aguas residuales es
más sostenible que las tecnologías aerobias actuales ya que el agua residual se transforma en
una fuente renovable de energía y nutrientes, proporcionando además un recurso de agua
reutilizable. SAnMBR no sólo presenta las principales ventajas de los reactores de membranas
(i.e. efluente de alta calidad, y pocas necesidades de espacio), sino que también presenta las
principales ventajas de los procesos anaerobios. En este sentido, la tecnología SAnMBR
presenta una baja producción de fangos debido a la baja tasa de crecimiento de los
microorganismos implicados en la degradación de la materia orgánica, presenta una baja
demanda energética debido a la ausencia de aireación, y permite la generación de metano, el
cual representa una fuente de energía renovable que mejora el balance energético neto del
sistema. Cabe destacar el potencial de recuperación de nutrientes del agua residual bien cuando
el efluente es destinado a irrigación directamente, o bien cuando debe ser tratado previamente
mediante tecnologías de recuperación de nutrientes.
El objetivo principal de esta tesis doctoral es evaluar la viabilidad de la tecnología SAnMBR
como núcleo en el tratamiento de aguas residuales urbanas a temperatura ambiente. Por lo tanto,
esta tesis se centra en las siguientes tareas: (1) implementación, calibración y puesta en marcha
del sistema de instrumentación, control y automatización requerido; (2) identificación de los
parámetros de operación clave que afectan al proceso de filtración; (3) modelación y simulación
del proceso de filtración; y (4) desarrollo de estrategias de control para la optimización del
proceso de filtración minimizando los costes de operación.
En este trabajo de investigación se propone un sistema de instrumentación, control y
automatización para SAnMBR, el cual fue esencial para alcanzar un comportamiento adecuado
y estable del sistema frente a posibles perturbaciones. El comportamiento de las membranas fue
comparable a sistemas MBR aerobios a escala industrial. Tras más de dos años de operación
ininterrumpida, no se detectaron problemas significativos asociados al ensuciamiento
irreversible de las membranas, incluso operando a elevadas concentraciones de sólidos en el
licor mezcla (valores de hasta 25 g·L-1
). En este trabajo se presenta un modelo de filtración
(basado en el modelo de resistencias en serie) que permitió simular de forma adecuada el proceso de filtración. Por otra parte, se propone un control supervisor basado en un sistema
experto que consiguió reducir el consumo energético asociado a la limpieza física de las
membranas, un bajo porcentaje de tiempo destinado a la limpieza física respecto al total de
operación, y, en general, un menor coste operacional del proceso de filtración.
Esta tesis doctoral está integrada en un proyecto nacional de investigación, subvencionado por
el Ministerio de Ciencia e Innovación (MICINN), con título ¿Modelación de la aplicación de la
tecnología de membranas para la valorización energética de la materia orgánica del agua
residual y la minimización de los fangos producidos¿ (MICINN, proyecto CTM2008-06809-
C02-01/02). Para obtener resultados representativos que puedan ser extrapolados a plantas
reales, esta tesis doctoral se ha llevado a cabo utilizando un sistema SAnMBR que incorpora
módulos comerciales de membrana de fibra hueca. Además, esta planta es alimentada con el
efluente del pre-tratamiento de la EDAR del Barranco del Carraixet (Valencia, España). / Robles Martínez, Á. (2013). Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewater [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34102 / Premios Extraordinarios de tesis doctorales
|
104 |
Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module (RVF Technology) for Intensification of Industrial Bioprocess / Etude de l’hydrodynamique d’un module de Filtration Dynamique (RVF Technologie) pour intensifier les bioprocédés industrielsXie, Xiaomin 22 May 2017 (has links)
Cette thèse porte sur la compréhension et le contrôle des interactions dynamiques entre les mécanismes physiques et biologiques en considérant un procédé alternatif de séparation membranaire pour les bioprocédés industriels. L’objectif premier est un apport de connaissances scientifiques liées à la maîtrise de la bioréaction en considérant l'hydrodynamique complexe et les verrous rétention-perméation. Une technologie de filtration dynamique, appelée Rotating and Vibrating Filtration (RVF), a été spécifiquement étudiée. Elle se compose de cellules de filtration en série comprenant deux membranes circulaires planes fixées sur des supports poreux au voisinage d'un agitateur à trois pales planes attachées à un arbre central. Ce dispositif mécanique simple fonctionne en continu et génère une contrainte de cisaillement élevée ainsi qu'une perturbation hydrodynamique dans un entrefer étroit (pale-membrane). Les verrous scientifiques et techniques qui motivent ce travail, sont la caractérisation et la quantification (i) des champs de vitesse locaux et instantanés, (2) des contraintes pariétales de cisaillement à la surface de la membrane et (3) l'impact mécanique sur les cellules microbiennes.Dans ce but, des expériences et des simulations numériques ont été réalisées pour étudier l'hydrodynamique à des échelles globales et locales, en régimes laminaire et turbulent avec des fluides newtoniens dans des environnements biotique et abiotique. Pour l'approche globale, la distribution des temps de séjour (RTD) et le bilan thermique ont été réalisés et comparés aux précédentes études globales (courbes de consommation de puissance et de frottement). Une étude analytique des fonctions de distribution a été effectuée et les moments statistiques ont été calculés et discutés. Une analyse systémique a été utilisée pour décrire les comportements hydrodynamiques du module RVF. En combinant la simulation des écoulements (CFD) et les observations (RTD), les conditions et les zones de dysfonctionnement des cellules de filtration sont éclairées. Pour l'approche locale, la vélocimétrie laser (PIV) a été réalisée dans les plans horizontaux et verticaux et comparée à la simulation numérique (CFD). Une étude préliminaire basée sur une synchronisation entre la prise d’image et la position de l’agitateur (résolution angulaire) a permis d’accéder aux champs de vitesse moyens. Une campagne de mesure PIV a été réalisée sans synchronisation afin d’appliquer une décomposition orthogonale aux valeurs propres (POD) pour 'identifier les composantes moyennes, organisées et turbulentes des champs de vitesse (énergie cinétique). Pour l'application aux bioprocédés, un travail exploratoire a caractérisé l'effet de la filtration dynamique sur des cellules procaryotes (E. coli) en quantifiant l'intégrité cellulaire ou leur dégradation en fonction du temps et de la vitesse de rotation. / This thesis focuses on the understanding and the control of dynamic interactions between physical and biological mechanisms considering an alternative membrane separation into industrial bioprocess. It aims to carry scientific knowledge related to the control of bioreaction considering complex hydrodynamics and retention-permeation locks specific to membrane separation. A dynamic filtration technology, called Rotating and Vibrating Filtration (RVF), was investigated. It consists of filtration cells in series including two flat disc membranes fixed onto porous substrates in the vicinity of a three-blade impeller attached to a central shaft. This simple mechanical device runs continuously and generates a high shear stress as well as a hydrodynamic perturbation in the narrow membrane-blade gap. Several scientific and technical locks motivating this work are to characterize and to quantify (i) the velocity fields locally and instantaneously, (2) the shear stresses at membrane surface and (3) the mechanical impact on microbial cells.To this end, experiments and numerical simulations have been performed to investigate the hydrodynamics at global and local scales under laminar and turbulent regimes with Newtonian fluids under biotic and abiotic environment. For global approach, investigation of Residence Time Distribution (RTD) and thermal balance was carried out and compared to the previous global study (power consumption and friction curves). Analytical study of distribution functions was conducted and statistical moments were calculated and discussed. A systemic analysis was used to describe the hydrodynamic behaviors of the RVF module. Combining Computational Fluid Dynamics (CFD) and RTD observations, it leads to demonstrate dysfunctioning conditions and area. For the local approach, Particle Image Velocimetry (PIV) was be carried out in both horizontal and vertical planes and compared to CFD simulation. PIV preliminary study was conducted with a trigger strategy to access through angle-resolved measurements to an averaged velocity field. PIV further study were performed with a non-trigger strategy and applied to Proper Orthogonal Decomposition (POD) analysis in order to identify the coherent structure of the flow by decomposing the organized and turbulent fluctuations. For the bioprocess application, an exploratory work characterized the effect of Dynamic Filtration on prokaryote cell population (Escherichia coli) by quantifying cell integrity or damage as a function of time and rotation speed during filtration process in turbulent regime.
|
105 |
Anaerobní membránový bioreaktor (AnMBR) pro čištění odpadních vod potravinářského průmyslu / Anaerobic membrane bioreactor (AnMBR) for food industry wastewater treatment.Polášek, Daniel Unknown Date (has links)
The most significant environmental problems related to the food industry is water consumption and pollution, energy consumption and waste production. Most of the water that does not become a part of the products ultimately leaves plants in the form of wastewater, which is often very specific and requires adequate handling / treatment / disposal. For the purpose of this thesis, brewery industry was chosen, because of its very long tradition in the Czech history and culture. Anaerobic technologies are applied for still wider range of industrial wastewater treating. In general anaerobic membrane bioreactors (AnMBRs) can very effectively treat wastewater of different concentration and composition and produce treated water (outlet, permeate) of excellent quality, that can be further utilised. At the same time, it can promote energy self-sufficiency through biogas production usable in WWTPs / plants. Main disadvantages include unavoidable membrane fouling and generally higher CAPEX / OPEX. Within the framework of Ph.D. studies and related research activities, immersed membrane modules for anaerobic applications were selected and lab-scale tested (designed and assembled laboratory unit), an AnMBR pilot plant was designed, built and subsequently tested under real conditions - at Černá Hora Brewery WWTP (waste waters from the brewery and associated facilities). The pilot AnMBR and the technology itself has been verified over more than a year (5/2015 – 11/2016) of trial operation - the initial and recommended operational parameters have been set up, minor construction adjustments / modifications and measurement & regulation optimizations have been made, the recommended membrane cleaning and regeneration procedure has been verified. Last, but not least, conclusions and recommendations of the trial operation were summarised - some key findings and recommendations for further operation, use and modifications of the existing AnMBR pilot plant are presented.
|
Page generated in 0.0671 seconds