• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulating Protease Activated Receptor 2

Yung Suen Unknown Date (has links)
Protease-Activated Receptors (PARs) belong to an unusual family of G Protein Coupled Receptors (GPCRs). Each of the four known members is activated by its own N-terminus exposed by proteolytic cleavage and there is no other endogenous agonist known to date. PAR2 is the second member of the family and it has been implicated in wide range of pathophysiological conditions, particularly in various inflammatory diseases and cancers. In contrast, very little is known about the PAR2 receptor itself despite having been discovered more than 10 years ago. The purpose of this project was to improve our understanding of PAR2 regulation by discovering new agonists and antagonists and using them to probe the structural and functional properties of the receptor. Chapter 1 provides a brief literature overview of the initial discovery of PAR2, what is known about the mechanism of receptor activation, information on the structures and properties of current agonists and an antagonist for PAR2, and the putative physiological roles of human PAR2. As well, it summarizes the aims of this thesis. Chapter 2 investigates the regulation of gene expression by two different agonists of PAR2, a synthetic hexapeptide, 2f-LIGRLO-NH2, and the endogenous activator, trypsin, the idea being that genes up- or down- regulated by both agonists may more accurately profile PAR2-selective events. The effects of PAR2 activation on gene transcription in the human kidney HEK293 cell line were studied using a DNA microarray consisting of 19,000 human genes in an attempt to broadly cover the human genome and associated cell pathways with PAR2 activation. About 2,500 genes were regulated similarly by both agonists and, for genes expressed more than 5-fold, the mRNA results were further analyzed by quantitative RT-PCR techniques. PAR2 activation was shown to be associated with cellular metabolism, cell cycle, mitogen-activated protein kinase pathways, histone deacetylase and sirtuin enzymes, inflammatory cytokines and anti-complement function. Chapter 3 described a range of molecular events surrounding the activation of the receptor. PAR2 mRNA expression was quantitated by qRT-PCR and cross-checked with an intracellular Ca2+ assay. In this way whole cell PAR2 could be correlated with cell surface expression of PAR2. Three cell lines expressing high levels of PAR2 were chosen for subsequent experiments, these being colorectal carcinoma HT29, lung carcinoma A549 and human embryonic kidney HEK293 cells. Receptor activation, internalization, desensitization and resensitization assays were carried out on these cell lines to define some key functions relevant for investigating inhibitors in subsequent chapters. Chapter 4 reports a PAR2 mutagenesis study designed to identify the location of the binding site on PAR2 for a specific peptide agonist. A homology model of PAR2 based on bovine rhodopsin was used for docking of an agonist ligand, and the docking results were then investigated via two successive rounds of PAR2 mutagenesis in which the effect of each mutation (20 in all) was separately investigated by changes in agonist potency in the intracellular calcium release assay. Five PAR2 mutants showed more than a 5-fold reduction in agonist potency, while three others showed up to a 7-fold reduction. Mutations found to be important for agonist activity were mapped back to the model. Because there was extensive clustering of these key mutated amino acids, it is likely that this study has pinpointed the precise binding site of the agonist peptide in PAR2. Interestingly, this site is within the transmembrane region of the receptor. Chapter 5 reports the design, discovery and development of novel PAR2 agonists and antagonists and their regulatory effects in a diverse array of cell types. Structure-activity relationships were used to examine influences on the first, sixth and seventh positions of a PAR2 agonist peptide. At least five compounds were found herein to be equiopotent with the most potent PAR2 agonist reported. Knowledge obtained from this study was then used to create the first non-peptidic agonists for PAR2. The most potent nonpeptidic agonist (retaining one natural amino acid) was at least equipotent with the best peptide agonists. Conversion to nonpeptidic antagonists proved to be successful and this chapter reports the most potent known nonpeptide antagonist, which was selective for PAR2 and active at low micromolar concentrations. It inhibited intracellular Ca2+ release induced by different PAR2 agonists (trypsin, 2f-LIGRLO-NH2, nonpeptide agonists) in multiple cell lines (HT29, Panc-1, A549, MKN1, MKN45, MDA-MB-231, HUVEC) that have been physiologically associated with PAR2. It also inhibited release of inflammatory cytokines IL-8 and IL-6 and shows antiproliferative activity against primary human cells. The antagonist is competitive, reversible and surmountable (pA2 6.11). This thesis summarizes a large body of work that provides valuable molecular insights to PAR2 regulation, and lays the groundwork for rational design and development of novel nonpeptidic agonists and antagonists of PAR2 as potentially valuable pharmacological probes in vivo and as useful leads to development of therapeutics for inflammatory diseases and cancers.
2

Bacterial protein import mediated by an iron transporter

White, Paul January 2017 (has links)
Multidrug resistant bacteria (MDR) have the potential to push back society to the pre-antibiotic era. Although discovered before penicillin, the inexorable rise in antibiotic resistance has revitalised interest in bacteriocins as treatments for bacterial infections. Bacteriocins are protein antibiotics principal to competition amongst pathogens and commensals, but the mechanisms by which they translocate across the Gram-negative cell envelope are poorly understood. The work presented in this thesis demonstrates how the endonuclease bacteriocin pyocin S2 (pyoS2) exploits the iron transporter FpvAI to translocate across the outer membrane (OM) of Pseudomonas aeruginosa. FpvAI is a 22-strand &beta;-barrel and virulence factor in P. aeruginosa that transports iron into the cell in the form of a small siderophore, ferripyoverdine (Fe-Pvd). Uptake of Fe-Pvd requires the proton motive force (PMF), which is transduced to the ligand-bound receptor by TonB1 and its partner proteins ExbB-ExbD in the inner membrane (IM). The crystal structure of the high affinity complex (Kd = 240 pM) formed between the N-terminal domain of pyoS2 (pyoS2<sup>NTD</sup>) and FpvAI is presented, which shows pyoS2<sup>NTD</sup> mimics Fe-Pvd, and induces the same conformational changes in the receptor. Fluorescently-labelled pyoS2<sup>NTD</sup> was actively imported into P. aeruginosa PAO1 cells and this import was dependent on the PMF, TonB1 and a TonB1-box motif at the N-terminus of pyoS2<sup>NTD</sup>. Finally, photo-activated crosslinking of stalled translocation intermediates demonstrated pyoS2<sup>NTD</sup> translocates through the FpvAI &beta;-barrel lumen by a process analogous to that of Fe-Pvd. Following binding to FpvAI, translocation begins by the unfolding of a force-labile portion of the plug domain, opening a narrow channel through FpvAI. This enables pyoS2 to deliver its own TonB1-box to the periplasm where contact with TonB1 activates its import through the same channel, most likely as an unfolded polypeptide. Hence, this study demonstrates that bacteria possess a rudimentary protein import system that exploits energised nutrient transporters in the OM.
3

Role of the SCF/KIT signalling pathway in embryonic stem cells

Fraser, Lindsay January 2011 (has links)
Murine embryonic stem (ES) cells are derived from the inner cell mass of the developing embryonic blastocyst. These cells can self renew which allows them to be propagated indefinitely in the laboratory and they can differentiate into cell types derived from all three germ layers. Manipulation of the mouse genome using gene targeting techniques in conjunction with ES cell technology has provided valuable insights into embryonic development and cell lineage specification. KIT is a trans-membrane receptor tyrosine kinase (RTK) that dimerises upon binding to its ligand, stem cell factor (SCF) resulting in the auto-phosphorylation of intracellular kinase domains. This activity is crucial for the transmission of signals from the cell surface to the nucleus. KIT is expressed on stem and progenitor cells of many lineages and defects in the SCF/KIT signaling pathway causes detrimental effects at both the cellular and physiological level. This project aimed to investigate the role of the SCF/KIT signalling pathway during murine ES cell differentiation and survival. To assess the role of SCF/KIT signalling in ES cell proliferation and survival, we knocked out the c-kit gene in mouse ES cells to produce heterozygous (KitW-lacZ/+) and KIT Null (KitW-lacZ/W-lacZ) cell lines. The self renewal and differentiation profile of these cell lines revealed an auxiliary role for SCF/KIT during ES cell self renewal and an absolute role in survival upon in vitro differentiation. This phenotype of apoptosis upon differentiation was recapitulated in wild type E14 ES cells treated with a KIT neutralising antibody (ACK2). Wild type cells that were treated with the JNK inhibitor, SP600125 had a comparable phenotype to KIT null cells indicating that this could be one of the mediators of KIT signalling that has a protective role in the survival of differentiating ES cells. We hypothesised that blocking classical apoptotic pathways might prevent the death on differentiation observed in KIT null cells. However, neither blocking the pro-apoptotic P38 pathway with the chemical inhibitor PD169316 nor over-expressing the pro-survival protein BCL2 in KIT Null cells could prevent their apoptosis upon differentiation phenotype. This strongly suggests that these pathways are not involved in KIT mediated survival of differentiating ES cells. Although compensatory mechanisms are thought to exist for defective KIT signaling in vivo, an absolute role is assigned to KIT during ES cell differentiation. Further analysis of micro array data comparing gene expression from wild type E14 and KIT Null cell lines may reveal the specific mechanisms of KIT mediated survival during differentiation onset.
4

Teleost reproduction: Aspects of Arctic char (<i>Salvelinus alpinus</i>) oocyte growth and maturation.

Berg, Håkan January 2003 (has links)
<p>In all vertebrate species, reproduction is a hormonally controlled process, important for growth and maturation of gonads and germ cells. Production of functional germ cells is of outmost importance to secure the survival of a species. Fish comprises 50% of the known vertebrates and are found in aquatic habitats all over the world. Even though fish have evolved a wide variety of morphological and physiological characteristics, due to large differences in the living environment, the growth an maturation of germ cells follows the same pattern in all species. In this thesis the focus has been directed on oocyte growth and development in Arctic char (Salvelinus alpinus), and if stress might inflict disturbances on the reproductive systems.</p><p>All sexually mature female egg laying vertebrates produces yolky eggs surrounded by an eggshell. Production of yolk and egg shell is under estrogenic control and it is known that production of egg components can be induced in male and juvenile fish by estrogenic substances. Many manmade chemicals have been found to interfere with hormonally controlled processes. Therefore production of the egg yolk precursor, vitellogenin (VTG), and the egg shell components, vitelline envelope proteins (VEP), have been used as biomarkers for estrogenic effect. Exposure to endocrine disrupting substances (EDS) does not only give rise to hormonal effects on the organism, but in addition it also gives rise to an increase in stress hormone, cortisol (F), levels. </p><p>It is evident that a wide variety of substances may affect Arctic char oocyte growth and maturation. VTG and VEP production is found to be under dose dependent estrogenic control, but the production was directly affected by F. Under natural condition it has been found that F increases towards ovulation. Even though both VTG and VTG is under estrogenic control, these studies showed that stress lead to a decrease of VTG while the VEP production increased. These effects was only observed on protein levels indicating that a post transcriptional down regulation of VTG production is mediated by F in Arctic char.</p><p>In order for an egg to become fertilizatible, it must undergo a maturation phase. This maturation phase is primarily induced by gonadotropins, which in turn induce the production of species specific maturation inducing substances (MIS). To investigate oocyte development in Arctic char a characterization of its MIS receptor was made. The MIS receptor is localized on the oocyte surface and displays a single class of high affinity and low capacity binding sites. The binding moieties displays association and dissociation kinetics typical of steroid membrane receptors.</p><p>Even though high specificity for Arctic char MIS was observed, it was found that some EDS bind to the Arctic char oocyte membrane receptor. This suggest that certain EDS might affect oocyte maturation and thereby might alter the reproductive success. Furthermore, it was found that F did not bind to the MIS receptor in Arctic char. It is therefore suggested that oocytes are more sensitive to stress during the growth phase than during maturation</p>
5

Teleost reproduction: Aspects of Arctic char (Salvelinus alpinus) oocyte growth and maturation.

Berg, Håkan January 2003 (has links)
In all vertebrate species, reproduction is a hormonally controlled process, important for growth and maturation of gonads and germ cells. Production of functional germ cells is of outmost importance to secure the survival of a species. Fish comprises 50% of the known vertebrates and are found in aquatic habitats all over the world. Even though fish have evolved a wide variety of morphological and physiological characteristics, due to large differences in the living environment, the growth an maturation of germ cells follows the same pattern in all species. In this thesis the focus has been directed on oocyte growth and development in Arctic char (Salvelinus alpinus), and if stress might inflict disturbances on the reproductive systems. All sexually mature female egg laying vertebrates produces yolky eggs surrounded by an eggshell. Production of yolk and egg shell is under estrogenic control and it is known that production of egg components can be induced in male and juvenile fish by estrogenic substances. Many manmade chemicals have been found to interfere with hormonally controlled processes. Therefore production of the egg yolk precursor, vitellogenin (VTG), and the egg shell components, vitelline envelope proteins (VEP), have been used as biomarkers for estrogenic effect. Exposure to endocrine disrupting substances (EDS) does not only give rise to hormonal effects on the organism, but in addition it also gives rise to an increase in stress hormone, cortisol (F), levels. It is evident that a wide variety of substances may affect Arctic char oocyte growth and maturation. VTG and VEP production is found to be under dose dependent estrogenic control, but the production was directly affected by F. Under natural condition it has been found that F increases towards ovulation. Even though both VTG and VTG is under estrogenic control, these studies showed that stress lead to a decrease of VTG while the VEP production increased. These effects was only observed on protein levels indicating that a post transcriptional down regulation of VTG production is mediated by F in Arctic char. In order for an egg to become fertilizatible, it must undergo a maturation phase. This maturation phase is primarily induced by gonadotropins, which in turn induce the production of species specific maturation inducing substances (MIS). To investigate oocyte development in Arctic char a characterization of its MIS receptor was made. The MIS receptor is localized on the oocyte surface and displays a single class of high affinity and low capacity binding sites. The binding moieties displays association and dissociation kinetics typical of steroid membrane receptors. Even though high specificity for Arctic char MIS was observed, it was found that some EDS bind to the Arctic char oocyte membrane receptor. This suggest that certain EDS might affect oocyte maturation and thereby might alter the reproductive success. Furthermore, it was found that F did not bind to the MIS receptor in Arctic char. It is therefore suggested that oocytes are more sensitive to stress during the growth phase than during maturation
6

Studium membránových receptorů pomocí vazby radioligandů / The study of membrane receptors by radioligands binding

Rejhová, Alexandra January 2011 (has links)
Drug addiction, opiates respectively, is a social problem which seriousness is currently on the rise. One of key elements causing addiction is tolerance to increasing doses of drug causing abstinence syndrome during withdrawal and craving. Opioid receptors are members of a large group of receptors coupled with heterotrimeric G-proteins (GPCR), whose properties can be investigated using agonist- stimulated binding [35 S] GTPγS. Many extracellular signals are transferred into a cell through GPCR. Opioid receptor agonists inhibit the activity of adenylyl cyclase and are coupled with G-protein group Gi/Go. This work is devoted to the study of changes in isolated plasma membranes of rat forebrain containing opioid receptors of healthy subjects with membranes acquired from morphine addicted subjects. The rats were long-term morphine treated in increasing doses, to develop the dependency. The comparison is done firstly by binding of [3 H]ouabain to Na,K-ATPase, which proves to be a negative standard of changes, secondly by binding [35 S]GTPγS to G-proteins, thereby providing the functional activity of G-protein in stimulating the binding by the agonist of δ-opioid receptors DADLE or agonist of µ-opioid receptors DAMGO. Furthermore, it has been studied the influence of prostaglandin E1 on binding [35...
7

Dynamique structurale et allostérie des récepteurs NMDA / Structural dynamics and allostery of NMDA receptors

Esmenjaud, Jean-Baptiste 16 July 2018 (has links)
Les récepteurs ionotropiques du glutamate sont responsables de la vaste majorité de la neurotransmission excitatrice rapide dans le système nerveux central. Parmi eux, les récepteurs NMDA (rNMDA) sont les médiateurs de la plasticité synaptique, fondement cellulaire des processus d’apprentissage et de mémoire. Leurs dysfonctionnements sont impliqués dans de nombreuses pathologies neurologiques et psychiatriques comme les maladies d’Alzheimer et de Parkinson, l’épilepsie et la schizophrénie. Les rNMDA forment des complexes hétérotétramériques massifs (>500 kDa) dotés de propriétés allostériques uniques grâce à un ensemble de 8 domaines extracellulaires bilobés organisé en deux strates superposées : la couche de domaines N-terminaux (NTD) et la couche de domaines de liaison de l’agoniste (ABD). Malgré un nombre croissant de structures complètes de rNMDA, le mécanisme de transduction permettant aux interactions entre ces domaines de contrôler l’activité du récepteur restait inconnu. En combinant analyse expérimentale et computationnelle, nous montrons qu’un mouvement de roulis à l’interface entre les deux dimères de la couche d’ABD est un déterminant clé du processus d’activation et de modulation des rNMDA. Cette rotation des deux dimères d’ABD constitue un commutateur conformationnel qui règle l’ouverture du canal en fonction de la conformation des NTD situés à l’opposé. Ce travail révèle comment des changements conformationnels concertés entre couches de domaines gouvernent l’activité des rNMDA. Il illumine notre compréhension d’un récepteur synaptique majeur du système nerveux central et ouvre la voie à la conception de nouveaux agents pharmacologiques ciblant le mécanisme allostérique élucidé. / Ionotropic glutamate receptors are responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. Among them, NMDA receptors (NMDARs) are key mediators of synaptic plasticity, which is considered as the cellular basis of learning and memory. NMDAR dysfunction is implicated in numerous neurological and psychiatric brain disorders such as Alzheimer and Parkinson’s disease, epilepsy and schizophrenia. NMDAR form massive hetero tetrameric complexes (>500 kDa) endowed with unique allosteric capacity provided by a cluster of eight extracellular clamshell-like domains arranged as two superimposed layers: the Nterminal domain (NTD) layer and the agonist binding domain (ABD) layer. Despite an increasing number of full-length NMDAR structures, the transduction mechanism by which these domains interact in an intact receptor to control its activity remained poorly understood. Combining experimental and in silico analysis, we identify a rolling motion at an interface between the two constitute dimers in the ABD layer as a key determinant in NMDAR activation and modulation pathways. This rotation of the two ABD dimers acts as a conformational switch that tunes channel opening depending on the conformation of the membrane-distal NTD layer. This work unveils how NMDAR domains move and operate in a concerted manner to transduce conformational changes between layers and command receptor activity. It illuminates our understanding of a major synaptic receptor of the central nervous system and paves the way for the development of new pharmacological tools targeting the elucidated allosteric mechanism.
8

Quantitative Study of Membrane Nano-organization by Single Nanoparticle Imaging / Etude quantitative de la Nano-organisation Membranaire par Imagerie Simple de Nanoparticules

Yu, Chao 24 July 2019 (has links)
La nano-organisation de la membrane cellulaire est essentielle à la régulation de certaines fonctions cellulaires. Dans cette thèse, les récepteurs EGF, CPεT et de la transferrine ont été marqués avec des nanoparticules luminescentes et ont été suivis à la fois dans leur environnement local dans la membrane cellulaire vivantes pour de longues durées et sous un flux hydrodynamique. Nous avons alors appliqué des techniques d'inférence bayésienne, d’arbre de décision et de clustering de données extraire des informations quantitatives sur les paramètres caractéristiques du mouvement des récepteurs, notamment la forme de leur confinement dans des microdomaines. L’application d’une force hydrodynamique sur les nanoparticules nous a alors permis de sonder les interactions auxquelles ces récepteurs sont soumis. Nous avons appliqué cette approche in vitro pour favoriser et mesurer la dissociation in vitro de paires récepteur / ligand à haute affinité entre des récepteurs membranaires et leurs ligands pharmaceutiques, telles que HB-EGF et DTR et l’avons ensuite appliqué à l’étude d’interactions à la membrane cellulaire. Nous avons ainsi mis en évidence trois modes différents d'organisation de la membrane et de confinement des récepteurs: le confinement de CPεTR est déterminé par l'interaction entre les récepteurs et les constituants lipidiques / protéiques des microdomaines, le potentiel de confinement de l'EGFR résulte de l'interaction avec les lipides et les protéines de l’environnement du radeau et de l’interaction avec la F-actine; les récepteurs de la transferrine diffusent librement dans la membrane, uniquement limités stériquement par des barrières d’actine, selon le modèle ‘picket-and-fence’. Nous avons de plus montré que les nanodomaines de type radeau sont rattachés au cytoskelette d’actine. Ce travail présente donc à la fois un aperçu quantitatif du récepteur membranaire, des mécanismes d’organisation à l’échelle nanométrique, et établit un cadre méthodologique avec lequel différents types de propriétés membranaires peuvent être étudiés. / In this thesis, EGF, CPεT and transferrin receptors were labeled with luminescent nanoparticles, , and were tracked both in their local environment in the cell membrane and under a hydrodynamic flow. Bayesian inference, Bayesian decision tree, and data clustering techniques can then be applied to obtain quantitative information on the receptor motion parameters. Furthermore, we introduced hydrodynamic force application in vitro to study biomolecule dissociation between membrane receptors and their pharmaceutical ligands in high affinity receptor- ligand pairs, such as HB-EGF and DTR. Finally, three different modes of membrane organization and receptor confinement were revealed: the confinement of CPεTR is determined by the interaction between the receptors and the lipid/protein constituents of the raft; the confining potential of EGFR results from the interaction with lipids and proteins of the raft environment and from the interaction with F-actin; transferrin receptors diffuse freely in the membrane, only sterically limited by actin barriers, according to the “picket-and-fence” model. We moreover showed that all raft nanodomains are attached to the actin cytoskeleton.

Page generated in 0.0979 seconds